質問 1:The data engineering team maintains the following code:
Assuming that this code produces logically correct results and the data in the source table has been de-duplicated and validated, which statement describes what will occur when this code is executed?
A. An incremental job will detect if new rows have been written to the silver_customer_sales table; if new rows are detected, all aggregates will be recalculated and used to overwrite the gold_customer_lifetime_sales_summary table.
B. A batch job will update the gold_customer_lifetime_sales_summary table, replacing only those rows that have different values than the current version of the table, using customer_id as the primary key.
C. The silver_customer_sales table will be overwritten by aggregated values calculated from all records in the gold_customer_lifetime_sales_summary table as a batch job.
D. The gold_customer_lifetime_sales_summary table will be overwritten by aggregated values calculated from all records in the silver_customer_sales table as a batch job.
E. An incremental job will leverage running information in the state store to update aggregate values in the gold_customer_lifetime_sales_summary table.
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 2:A data engineer wants to reflector the following DLT code, which includes multiple definition with very similar code:
In an attempt to programmatically create these tables using a parameterized table definition, the data engineer writes the following code.
The pipeline runs an update with this refactored code, but generates a different DAG showing incorrect configuration values for tables.
How can the data engineer fix this?
A. Load the configuration values for these tables from a separate file, located at a path provided by a pipeline parameter.
B. Convert the list of configuration values to a dictionary of table settings, using table names as keys.
C. Convert the list of configuration values to a dictionary of table settings, using different input the for loop.
D. Wrap the loop inside another table definition, using generalized names and properties to replace with those from the inner table
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 3:A Delta table of weather records is partitioned by date and has the below schema:
date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT
To find all the records from within the Arctic Circle, you execute a query with the below filter:
latitude > 66.3
Which statement describes how the Delta engine identifies which files to load?
A. All records are cached to an operational database and then the filter is applied
B. The Hive metastore is scanned for min and max statistics for the latitude column
C. The Parquet file footers are scanned for min and max statistics for the latitude column
D. The Delta log is scanned for min and max statistics for the latitude column
E. All records are cached to attached storage and then the filter is applied
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 4:Which is a key benefit of an end-to-end test?
A. It pinpoint errors in the building blocks of your application.
B. It provides testing coverage for all code paths and branches.
C. It makes it easier to automate your test suite
D. It closely simulates real world usage of your application.
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 5:A Delta Lake table was created with the below query:
Realizing that the original query had a typographical error, the below code was executed:
ALTER TABLE prod.sales_by_stor RENAME TO prod.sales_by_store
Which result will occur after running the second command?
A. All related files and metadata are dropped and recreated in a single ACID transaction.
B. The table reference in the metastore is updated and no data is changed.
C. The table name change is recorded in the Delta transaction log.
D. The table reference in the metastore is updated and all data files are moved.
E. A new Delta transaction log Is created for the renamed table.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 6:Incorporating unit tests into a PySpark application requires upfront attention to the design of your jobs, or a potentially significant refactoring of existing code.
Which statement describes a main benefit that offset this additional effort?
A. Yields faster deployment and execution times
B. Troubleshooting is easier since all steps are isolated and tested individually
C. Improves the quality of your data
D. Ensures that all steps interact correctly to achieve the desired end result
E. Validates a complete use case of your application
正解:B
Databricks Databricks-Certified-Professional-Data-Engineer 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Monitoring & Logging: This topic includes understanding the Spark UI, inspecting event timelines and metrics, drawing conclusions from various UIs, designing systems to control cost and latency SLAs for production streaming jobs, and deploying and monitoring both streaming and batch jobs.
|
トピック 2 | - Databricks Tooling: The Databricks Tooling topic encompasses the various features and functionalities of Delta Lake. This includes understanding the transaction log, Optimistic Concurrency Control, Delta clone, indexing optimizations, and strategies for partitioning data for optimal performance in the Databricks SQL service.
|
トピック 3 | - Data Processing: The topic covers understanding partition hints, partitioning data effectively, controlling part-file sizes, updating records, leveraging Structured Streaming and Delta Lake, implementing stream-static joins and deduplication. Additionally, it delves into utilizing Change Data Capture, and addressing performance issues related to small files.
|
トピック 4 | - Testing & Deployment: It discusses adapting notebook dependencies to use Python file dependencies, leveraging Wheels for imports, repairing and rerunning failed jobs, creating jobs based on common use cases, designing systems to control cost and latency SLAs, configuring the Databricks CLI, and using the REST API to clone a job, trigger a run, and export the run output.
|
参照:https://www.databricks.com/learn/certification/data-engineer-professional
TopExamは君にDatabricks-Certified-Professional-Data-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Professional-Data-Engineer問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば試験に合格できます
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Professional-Data-Engineer問題集の質問と答えが間違いないのを保証いたします。
この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば、君は一回で試験に合格できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Certified-Professional-Data-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Professional-Data-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Professional-Data-Engineerを持っていることを保証します。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Certified-Professional-Data-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Professional-Data-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
弊社は無料Databricks Databricks-Certified-Professional-Data-Engineerサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Professional-Data-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Professional-Data-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Certified-Professional-Data-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。