質問 1:The data engineering team has configured a Databricks SQL query and alert to monitor the values in a Delta Lake table. Therecent_sensor_recordingstable contains an identifyingsensor_idalongside thetimestampandtemperaturefor the most recent 5 minutes of recordings.
The below query is used to create the alert:

The query is set to refresh each minute and always completes in less than 10 seconds. The alert is set to trigger whenmean (temperature) > 120. Notifications are triggered to be sent at most every 1 minute.
If this alert raises notifications for 3 consecutive minutes and then stops, which statement must be true?
A. The average temperature recordings for at least one sensor exceeded 120 on three consecutive executions of the query
B. The maximum temperature recording for at least one sensor exceeded 120 on three consecutive executions of the query
C. Therecent_sensor_recordingstable was unresponsive for three consecutive runs of the query
D. The total average temperature across all sensors exceeded 120 on three consecutive executions of the query
E. The source query failed to update properly for three consecutive minutes and then restarted
正解:A
解説: (Topexam メンバーにのみ表示されます)
質問 2:An upstream system is emitting change data capture (CDC) logs that are being written to a cloud object storage directory. Each record in the log indicates the change type (insert, update, or delete) and the values for each field after the change. The source table has a primary key identified by the fieldpk_id.
For auditing purposes, the data governance team wishes to maintain a full record of all values that have ever been valid in the source system. For analytical purposes, only the most recent value for each record needs to be recorded. The Databricks job to ingest these records occurs once per hour, but each individual record may have changed multiple times over the course of an hour.
Which solution meets these requirements?
A. Use Delta Lake's change data feed to automatically process CDC data from an external system, propagating all changes to all dependent tables in the Lakehouse.
B. Use merge into to insert, update, or delete the most recent entry for each pk_id into a bronze table, then propagate all changes throughout the system.
C. Create a separate history table for each pk_id resolve the current state of the table by running a union all filtering the history tables for the most recent state.
D. Ingest all log information into a bronze table; use merge into to insert, update, or delete the most recent entry for each pk_id into a silver table to recreate the current table state.
E. Iterate through an ordered set of changes to the table, applying each in turn; rely on Delta Lake's versioning ability to create an audit log.
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 3:A Databricks SQL dashboard has been configured to monitor the total number of records present in a collection of Delta Lake tables using the following query pattern:
SELECT COUNT (*) FROM table -
Which of the following describes how results are generated each time the dashboard is updated?
A. The total count of records is calculated from the Delta transaction logs
B. The total count of records is calculated from the Hive metastore
C. The total count of records is calculated from the parquet file metadata
D. The total count of rows is calculated by scanning all data files
E. The total count of rows will be returned from cached results unless REFRESH is run
正解:A
解説: (Topexam メンバーにのみ表示されます)
質問 4:A data architect has designed a system in which two Structured Streaming jobs will concurrently write to a single bronze Delta table. Each job is subscribing to a different topic from an Apache Kafka source, but they will write data with the same schema. To keep the directory structure simple, a data engineer has decided to nest a checkpoint directory to be shared by both streams.
The proposed directory structure is displayed below:

Which statement describes whether this checkpoint directory structure is valid for the given scenario and why?
A. Yes; Delta Lake supports infinite concurrent writers.
B. Yes; both of the streams can share a single checkpoint directory.
C. No; Delta Lake manages streaming checkpoints in the transaction log.
D. No; only one stream can write to a Delta Lake table.
E. No; each of the streams needs to have its own checkpoint directory.
正解:E
解説: (Topexam メンバーにのみ表示されます)
質問 5:A Delta Lake table was created with the below query:

Realizing that the original query had a typographical error, the below code was executed:
ALTER TABLE prod.sales_by_stor RENAME TO prod.sales_by_store
Which result will occur after running the second command?
A. All related files and metadata are dropped and recreated in a single ACID transaction.
B. The table reference in the metastore is updated and no data is changed.
C. The table name change is recorded in the Delta transaction log.
D. The table reference in the metastore is updated and all data files are moved.
E. A new Delta transaction log Is created for the renamed table.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 6:Review the following error traceback:

Which statement describes the error being raised?
A. There is a type error because a DataFrame object cannot be multiplied.
B. The code executed was PvSoark but was executed in a Scala notebook.
C. There is no column in the table named heartrateheartrateheartrate
D. There is a type error because a column object cannot be multiplied.
E. There is a syntax error because the heartrate column is not correctly identified as a column.
正解:C
解説: (Topexam メンバーにのみ表示されます)
Databricks Databricks-Certified-Professional-Data-Engineer 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Data Processing: The topic covers understanding partition hints, partitioning data effectively, controlling part-file sizes, updating records, leveraging Structured Streaming and Delta Lake, implementing stream-static joins and deduplication. Additionally, it delves into utilizing Change Data Capture, and addressing performance issues related to small files.
|
トピック 2 | - Testing & Deployment: It discusses adapting notebook dependencies to use Python file dependencies, leveraging Wheels for imports, repairing and rerunning failed jobs, creating jobs based on common use cases, designing systems to control cost and latency SLAs, configuring the Databricks CLI, and using the REST API to clone a job, trigger a run, and export the run output.
|
トピック 3 | - Databricks Tooling: The Databricks Tooling topic encompasses the various features and functionalities of Delta Lake. This includes understanding the transaction log, Optimistic Concurrency Control, Delta clone, indexing optimizations, and strategies for partitioning data for optimal performance in the Databricks SQL service.
|
トピック 4 | - Data Modeling: It focuses on understanding the objectives of data transformations, using Change Data Feed, applying Delta Lake cloning, designing multiplex bronze tables. Lastly it discusses implementing incremental processing and data quality enforcement, implementing lookup tables, and implementing Slowly Changing Dimension tables, and implementing SCD Type 0, 1, and 2 tables.
|
トピック 5 | - Monitoring & Logging: This topic includes understanding the Spark UI, inspecting event timelines and metrics, drawing conclusions from various UIs, designing systems to control cost and latency SLAs for production streaming jobs, and deploying and monitoring both streaming and batch jobs.
|
参照:https://www.databricks.com/learn/certification/data-engineer-professional
TopExamは君にDatabricks-Certified-Professional-Data-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば試験に合格できます
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Professional-Data-Engineer問題集の質問と答えが間違いないのを保証いたします。

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば、君は一回で試験に合格できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Certified-Professional-Data-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Professional-Data-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Professional-Data-Engineerを持っていることを保証します。
弊社は無料Databricks Databricks-Certified-Professional-Data-Engineerサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Professional-Data-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Professional-Data-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Certified-Professional-Data-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Certified-Professional-Data-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Professional-Data-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Professional-Data-Engineer問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。