質問 1:Which REST API call can be used to review the notebooks configured to run as tasks in a multi-task job?
A. /jobs/get
B. /jobs/runs/get
C. /jobs/runs/list
D. /jobs/runs/get-output
E. /jobs/list
正解:A
解説: (Topexam メンバーにのみ表示されます)
質問 2:A junior data engineer is working to implement logic for a Lakehouse table namedsilver_device_recordings.
The source data contains 100 unique fields in a highly nested JSON structure.
Thesilver_device_recordingstable will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications.
The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields.
Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?
A. Schema inference and evolution on .Databricks ensure that inferred types will always accurately match the data types used by downstream systems.
B. Because Databricks will infer schema using types that allow all observed data to be processed, setting types manually provides greater assurance of data quality enforcement.
C. Because Delta Lake uses Parquet for data storage, data types can be easily evolved by just modifying file footer information in place.
D. The Tungsten encoding used by Databricks is optimized for storing string data; newly-added native support for querying JSON strings means that string types are always most efficient.
E. Human labor in writing code is the largest cost associated with data engineering workloads; as such, automating table declaration logic should be a priority in all migration workloads.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 3:Which statement characterizes the general programming model used by Spark Structured Streaming?
A. Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.
B. Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.
C. Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.
D. Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.
E. Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 4:A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFramedf. The pipeline needs to calculate the average humidity and average temperature for each non- overlapping five-minute interval. Events are recorded once per minute per device.
Streaming DataFramedfhas the following schema:
"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"
Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.
A. "event_time"
B. window("event_time", "5 minutes").alias("time")
C. lag("event_time", "10 minutes").alias("time")
D. window("event_time", "10 minutes").alias("time")
E. to_interval("event_time", "5 minutes").alias("time")
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 5:A small company based in the United States has recently contracted a consulting firm in India to implement several new data engineering pipelines to power artificial intelligence applications. All the company's data is stored in regional cloud storage in the United States.
The workspace administrator at the company is uncertain about where the Databricks workspace used by the contractors should be deployed.
Assuming that all data governance considerations are accounted for, which statement accurately informs this decision?
A. Databricks workspaces do not rely on any regional infrastructure; as such, the decision should be made based upon what is most convenient for the workspace administrator.
B. Cross-region reads and writes can incur significant costs and latency; whenever possible, compute should be deployed in the same region the data is stored.
C. Databricks leverages user workstations as the driver during interactive development; as such, users should always use a workspace deployed in a region they are physically near.
D. Databricks notebooks send all executable code from the user's browser to virtual machines over the open internet; whenever possible, choosing a workspace region near the end users is the most secure.
E. Databricks runs HDFS on cloud volume storage; as such, cloud virtual machines must be deployed in the region where the data is stored.
正解:B
解説: (Topexam メンバーにのみ表示されます)
質問 6:A data engineer needs to capture pipeline settings from an existing in the workspace, and use them to create and version a JSON file to create a new pipeline.
Which command should the data engineer enter in a web terminal configured with the Databricks CLI?
A. Stop the existing pipeline; use the returned settings in a reset command
B. Use the get command to capture the settings for the existing pipeline; remove the pipeline_id and rename the pipeline; use this in a create command
C. Use list pipelines to get the specs for all pipelines; get the pipeline spec from the return results parse and use this to create a pipeline
D. Use the alone command to create a copy of an existing pipeline; use the get JSON command to get the pipeline definition; save this to git
正解:B
解説: (Topexam メンバーにのみ表示されます)
TopExamは君にDatabricks-Certified-Professional-Data-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば試験に合格できます
弊社のDatabricks Databricks-Certified-Professional-Data-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Professional-Data-Engineer問題集の質問と答えが間違いないのを保証いたします。

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Professional-Data-Engineerを利用すれば、君は一回で試験に合格できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Certified-Professional-Data-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Professional-Data-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Professional-Data-Engineerを持っていることを保証します。
弊社は無料Databricks Databricks-Certified-Professional-Data-Engineerサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Professional-Data-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Professional-Data-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Certified-Professional-Data-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Certified-Professional-Data-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Professional-Data-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Professional-Data-Engineer問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
Databricks Databricks-Certified-Professional-Data-Engineer 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Testing & Deployment: It discusses adapting notebook dependencies to use Python file dependencies, leveraging Wheels for imports, repairing and rerunning failed jobs, creating jobs based on common use cases, designing systems to control cost and latency SLAs, configuring the Databricks CLI, and using the REST API to clone a job, trigger a run, and export the run output.
|
トピック 2 | - Databricks Tooling: The Databricks Tooling topic encompasses the various features and functionalities of Delta Lake. This includes understanding the transaction log, Optimistic Concurrency Control, Delta clone, indexing optimizations, and strategies for partitioning data for optimal performance in the Databricks SQL service.
|
トピック 3 | - Data Processing: The topic covers understanding partition hints, partitioning data effectively, controlling part-file sizes, updating records, leveraging Structured Streaming and Delta Lake, implementing stream-static joins and deduplication. Additionally, it delves into utilizing Change Data Capture and addressing performance issues related to small files.
|
トピック 4 | - Data Modeling: It focuses on understanding the objectives of data transformations, using Change Data Feed, applying Delta Lake cloning, designing multiplex bronze tables. Lastly it discusses implementing incremental processing and data quality enforcement, implementing lookup tables, and implementing Slowly Changing Dimension tables, and implementing SCD Type 0, 1, and 2 tables.
|
トピック 5 | - Monitoring & Logging: This topic includes understanding the Spark UI, inspecting event timelines and metrics, drawing conclusions from various UIs, designing systems to control cost and latency SLAs for production streaming jobs, and deploying and monitoring both streaming and batch jobs.
|
参照:https://www.databricks.com/learn/certification/data-engineer-professional