HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Databricks Associate-Developer-Apache-Spark 問題集

Associate-Developer-Apache-Spark

試験コード:Associate-Developer-Apache-Spark

試験名称:Databricks Certified Associate Developer for Apache Spark 3.0 Exam

最近更新時間:2024-12-16

問題と解答:全179問

Associate-Developer-Apache-Spark 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Associate-Developer-Apache-Spark 資格取得

質問 1:
Which of the following code blocks performs a join in which the small DataFrame transactionsDf is sent to all executors where it is joined with DataFrame itemsDf on columns storeId and itemId, respectively?
A. itemsDf.join(transactionsDf, broadcast(itemsDf.itemId == transactionsDf.storeId))
B. itemsDf.join(transactionsDf, itemsDf.itemId == transactionsDf.storeId, "broadcast")
C. itemsDf.join(broadcast(transactionsDf), itemsDf.itemId == transactionsDf.storeId)
D. itemsDf.merge(transactionsDf, "itemsDf.itemId == transactionsDf.storeId", "broadcast")
E. itemsDf.join(transactionsDf, itemsDf.itemId == transactionsDf.storeId, "right_outer")
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 2:
Which of the following describes Spark's Adaptive Query Execution?
A. Adaptive Query Execution features are dynamically switching join strategies and dynamically optimizing skew joins.
B. Adaptive Query Execution is enabled in Spark by default.
C. Adaptive Query Execution reoptimizes queries at execution points.
D. Adaptive Query Execution features include dynamically coalescing shuffle partitions, dynamically injecting scan filters, and dynamically optimizing skew joins.
E. Adaptive Query Execution applies to all kinds of queries.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 3:
Which of the following DataFrame methods is classified as a transformation?
A. DataFrame.count()
B. DataFrame.first()
C. DataFrame.select()
D. DataFrame.show()
E. DataFrame.foreach()
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 4:
The code block displayed below contains an error. The code block is intended to perform an outer join of DataFrames transactionsDf and itemsDf on columns productId and itemId, respectively.
Find the error.
Code block:
transactionsDf.join(itemsDf, [itemsDf.itemId, transactionsDf.productId], "outer")
A. The join type needs to be appended to the join() operator, like join().outer() instead of listing it as the last argument inside the join() call.
B. The "outer" argument should be eliminated from the call and join should be replaced by joinOuter.
C. The term [itemsDf.itemId, transactionsDf.productId] should be replaced by itemsDf.col("itemId") == transactionsDf.col("productId").
D. The term [itemsDf.itemId, transactionsDf.productId] should be replaced by itemsDf.itemId == transactionsDf.productId.
E. The "outer" argument should be eliminated, since "outer" is the default join type.
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 5:
Which of the following describes a difference between Spark's cluster and client execution modes?
A. In cluster mode, the Spark driver is not co-located with the cluster manager, while it is co-located in client mode.
B. In cluster mode, executor processes run on worker nodes, while they run on gateway nodes in client mode.
C. In cluster mode, the cluster manager resides on a worker node, while it resides on an edge node in client mode.
D. In cluster mode, a gateway machine hosts the driver, while it is co-located with the executor in client mode.
E. In cluster mode, the driver resides on a worker node, while it resides on an edge node in client mode.
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 6:
The code block displayed below contains multiple errors. The code block should remove column transactionDate from DataFrame transactionsDf and add a column transactionTimestamp in which dates that are expressed as strings in column transactionDate of DataFrame transactionsDf are converted into unix timestamps. Find the errors.
Sample of DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+----------------+
2.|transactionId|predError|value|storeId|productId| f| transactionDate|
3.+-------------+---------+-----+-------+---------+----+----------------+
4.| 1| 3| 4| 25| 1|null|2020-04-26 15:35|
5.| 2| 6| 7| 2| 2|null|2020-04-13 22:01|
6.| 3| 3| null| 25| 3|null|2020-04-02 10:53|
7.+-------------+---------+-----+-------+---------+----+----------------+ Code block:
1.transactionsDf = transactionsDf.drop("transactionDate")
2.transactionsDf["transactionTimestamp"] = unix_timestamp("transactionDate", "yyyy-MM-dd")
A. Column transactionDate should be dropped after transactionTimestamp has been written. The withColumn operator should be used instead of the existing column assignment. Column transactionDate should be wrapped in a col() operator.
B. Column transactionDate should be wrapped in a col() operator.
C. Column transactionDate should be dropped after transactionTimestamp has been written. The string indicating the date format should be adjusted. The withColumn operator should be used instead of the existing column assignment. Operator to_unixtime() should be used instead of unix_timestamp().
D. The string indicating the date format should be adjusted. The withColumnReplaced operator should be used instead of the drop and assign pattern in the code block to replace column transactionDate with the new column transactionTimestamp.
E. Column transactionDate should be dropped after transactionTimestamp has been written. The string indicating the date format should be adjusted. The withColumn operator should be used instead of the existing column assignment.
正解:E
解説: (Topexam メンバーにのみ表示されます)

弊社のDatabricks Associate-Developer-Apache-Sparkを利用すれば試験に合格できます

弊社のDatabricks Associate-Developer-Apache-Sparkは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はAssociate-Developer-Apache-Spark問題集の質問と答えが間違いないのを保証いたします。

Associate-Developer-Apache-Spark無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Associate-Developer-Apache-Sparkを利用すれば、君は一回で試験に合格できます。

一年間の無料更新サービスを提供します

君が弊社のDatabricks Associate-Developer-Apache-Sparkをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Associate-Developer-Apache-Sparkをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Associate-Developer-Apache-Sparkを持っていることを保証します。

TopExamは君にAssociate-Developer-Apache-Sparkの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のAssociate-Developer-Apache-Spark問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は無料Databricks Associate-Developer-Apache-Sparkサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Associate-Developer-Apache-Sparkサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのAssociate-Developer-Apache-Spark問題集は自分に適するかどうか判断して購入を決めることができます。

Associate-Developer-Apache-Spark試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のAssociate-Developer-Apache-Spark問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Associate-Developer-Apache-Sparkを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

Databricks Certified Associate Developer for Apache Spark 3.0 認定 Associate-Developer-Apache-Spark 試験問題:

1. Which of the following code blocks returns a DataFrame where columns predError and productId are removed from DataFrame transactionsDf?
Sample of DataFrame transactionsDf:
1.+-------------+---------+-----+-------+---------+----+
2.|transactionId|predError|value|storeId|productId|f |
3.+-------------+---------+-----+-------+---------+----+
4.|1 |3 |4 |25 |1 |null|
5.|2 |6 |7 |2 |2 |null|
6.|3 |3 |null |25 |3 |null|
7.+-------------+---------+-----+-------+---------+----+

A) transactionsDf.dropColumns("predError", "productId", "associateId")
B) transactionsDf.drop(col("predError", "productId"))
C) transactionsDf.drop("predError", "productId", "associateId")
D) transactionsDf.drop(["predError", "productId", "associateId"])
E) transactionsDf.withColumnRemoved("predError", "productId")


2. The code block displayed below contains an error. The code block should save DataFrame transactionsDf at path path as a parquet file, appending to any existing parquet file. Find the error.
Code block:

A) The mode option should be omitted so that the command uses the default mode.
B) The code block is missing a reference to the DataFrameWriter.
C) The code block is missing a bucketBy command that takes care of partitions.
D) save() is evaluated lazily and needs to be followed by an action.
E) transactionsDf.format("parquet").option("mode", "append").save(path)
F) Given that the DataFrame should be saved as parquet file, path is being passed to the wrong method.


3. Which of the following code blocks returns a DataFrame that has all columns of DataFrame transactionsDf and an additional column predErrorSquared which is the squared value of column predError in DataFrame transactionsDf?

A) transactionsDf.withColumn("predErrorSquared", pow(col("predError"), lit(2)))
B) transactionsDf.withColumnRenamed("predErrorSquared", pow(predError, 2))
C) transactionsDf.withColumn("predErrorSquared", pow(predError, lit(2)))
D) transactionsDf.withColumn("predErrorSquared", "predError"**2)
E) transactionsDf.withColumn("predError", pow(col("predErrorSquared"), 2))


4. The code block shown below should return a DataFrame with two columns, itemId and col. In this DataFrame, for each element in column attributes of DataFrame itemDf there should be a separate row in which the column itemId contains the associated itemId from DataFrame itemsDf. The new DataFrame should only contain rows for rows in DataFrame itemsDf in which the column attributes contains the element cozy.
A sample of DataFrame itemsDf is below.
Code block:
itemsDf.__1__(__2__).__3__(__4__, __5__(__6__))

A) 1. filter
2. array_contains("cozy")
3. select
4. "itemId"
5. explode
6. "attributes"
B) 1. filter
2. "array_contains(attributes, 'cozy')"
3. select
4. "itemId"
5. explode
6. "attributes"
C) 1. filter
2. "array_contains(attributes, 'cozy')"
3. select
4. "itemId"
5. map
6. "attributes"
D) 1. where
2. "array_contains(attributes, 'cozy')"
3. select
4. itemId
5. explode
6. attributes
E) 1. filter
2. "array_contains(attributes, cozy)"
3. select
4. "itemId"
5. explode
6. "attributes"


5. The code block shown below should return a two-column DataFrame with columns transactionId and supplier, with combined information from DataFrames itemsDf and transactionsDf. The code block should merge rows in which column productId of DataFrame transactionsDf matches the value of column itemId in DataFrame itemsDf, but only where column storeId of DataFrame transactionsDf does not match column itemId of DataFrame itemsDf. Choose the answer that correctly fills the blanks in the code block to accomplish this.
Code block:
transactionsDf.__1__(itemsDf, __2__).__3__(__4__)

A) 1. select
2. "transactionId", "supplier"
3. join
4. [transactionsDf.storeId!=itemsDf.itemId, transactionsDf.productId==itemsDf.itemId]
B) 1. join
2. transactionsDf.productId==itemsDf.itemId, how="inner"
3. select
4. "transactionId", "supplier"
C) 1. join
2. transactionsDf.productId==itemsDf.itemId, transactionsDf.storeId!=itemsDf.itemId
3. filter
4. "transactionId", "supplier"
D) 1. join
2. [transactionsDf.productId==itemsDf.itemId, transactionsDf.storeId!=itemsDf.itemId]
3. select
4. "transactionId", "supplier"
E) 1. filter
2. "transactionId", "supplier"
3. join
4. "transactionsDf.storeId!=itemsDf.itemId, transactionsDf.productId==itemsDf.itemId"


質問と回答:

質問 # 1
正解: A
質問 # 2
正解: B
質問 # 3
正解: A
質問 # 4
正解: B
質問 # 5
正解: D

Associate-Developer-Apache-Spark 関連試験
Databricks-Certified-Professional-Data-Engineer - Databricks Certified Professional Data Engineer Exam
Databricks-Certified-Data-Engineer-Associate - Databricks Certified Data Engineer Associate Exam
Databricks-Certified-Data-Engineer-Professional - Databricks Certified Data Engineer Professional Exam
Databricks-Certified-Professional-Data-Scientist - Databricks Certified Professional Data Scientist Exam
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。