HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Databricks Databricks-Certified-Data-Engineer-Professional 問題集

Databricks-Certified-Data-Engineer-Professional

試験コード:Databricks-Certified-Data-Engineer-Professional

試験名称:Databricks Certified Data Engineer Professional Exam

最近更新時間:2024-12-17

問題と解答:全127問

Databricks-Certified-Data-Engineer-Professional 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Databricks-Certified-Data-Engineer-Professional 資格取得

質問 1:
The data governance team is reviewing user for deleting records for compliance with GDPR. The following logic has been implemented to propagate deleted requests from the user_lookup table to the user aggregate table.

Assuming that user_id is a unique identifying key and that all users have requested deletion have been removed from the user_lookup table, which statement describes whether successfully executing the above logic guarantees that the records to be deleted from the user_aggregates table are no longer accessible and why?
A. Yes; Delta Lake ACID guarantees provide assurance that the DELETE command successed fully and permanently purged these records.
B. No; the Delta Lake DELETE command only provides ACID guarantees when combined with the MERGE INTO command
C. No; files containing deleted records may still be accessible with time travel until a BACUM command is used to remove invalidated data files.
D. Yes; the change data feed uses foreign keys to ensure delete consistency throughout the Lakehouse.
E. No; the change data feed only tracks inserts and updates not deleted records.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 2:
A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure.
The silver_device_recordings table will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications.
The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields.
Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?
A. Schema inference and evolution on .Databricks ensure that inferred types will always accurately match the data types used by downstream systems.
B. Because Databricks will infer schema using types that allow all observed data to be processed, setting types manually provides greater assurance of data quality enforcement.
C. Because Delta Lake uses Parquet for data storage, data types can be easily evolved by just modifying file footer information in place.
D. The Tungsten encoding used by Databricks is optimized for storing string data; newly-added native support for querying JSON strings means that string types are always most efficient.
E. Human labor in writing code is the largest cost associated with data engineering workloads; as such, automating table declaration logic should be a priority in all migration workloads.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 3:
A data ingestion task requires a one-TB JSON dataset to be written out to Parquet with a target Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from part- file size of 512 MB. Because Parquet is being used instead of Delta Lake, built-in file-sizing features such as Auto-Optimize & Auto-Compaction cannot be used.
Which strategy will yield the best performance without shuffling data?
A. Set spark.sql.shuffle.partitions to 2,048 partitions (1TB*1024*1024/512), ingest the data, execute the narrow transformations, optimize the data by sorting it (which automatically repartitions the data), and then write to parquet.
B. Set spark.sql.files.maxPartitionBytes to 512 MB, ingest the data, execute the narrow transformations, and then write to parquet.
C. Set spark.sql.adaptive.advisoryPartitionSizeInBytes to 512 MB bytes, ingest the data, execute the narrow transformations, coalesce to 2,048 partitions (1TB*1024*1024/512), and then write to parquet.
D. Ingest the data, execute the narrow transformations, repartition to 2,048 partitions (1TB*
1024*1024/512), and then write to parquet.
E. Set spark.sql.shuffle.partitions to 512, ingest the data, execute the narrow transformations, and then write to parquet.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 4:
A Databricks SQL dashboard has been configured to monitor the total number of records present in a collection of Delta Lake tables using the following query pattern:
SELECT COUNT (*) FROM table
Which of the following describes how results are generated each time the dashboard is updated?
A. The total count of records is calculated from the Delta transaction logs
B. The total count of records is calculated from the Hive metastore
C. The total count of records is calculated from the parquet file metadata
D. The total count of rows is calculated by scanning all data files
E. The total count of rows will be returned from cached results unless REFRESH is run
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 5:
The following table consists of items found in user carts within an e-commerce website.
Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from

The following MERGE statement is used to update this table using an updates view, with schema evaluation enabled on this table.

How would the following update be handled?
A. The new restored field is added to the target schema, and dynamically read as NULL for existing unmatched records.
B. The update is moved to separate ''restored'' column because it is missing a column expected in the target schema.
C. The update throws an error because changes to existing columns in the target schema are not supported.
D. The new nested field is added to the target schema, and files underlying existing records are updated to include NULL values for the new field.
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 6:
The security team is exploring whether or not the Databricks secrets module can be leveraged for connecting to an external database.
After testing the code with all Python variables being defined with strings, they upload the password to the secrets module and configure the correct permissions for the currently active Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from user. They then modify their code to the following (leaving all other variables unchanged).

Which statement describes what will happen when the above code is executed?
A. The connection to the external table will fail; the string "redacted" will be printed.
B. The connection to the external table will succeed; the string "redacted" will be printed.
C. The connection to the external table will succeed; the string value of password will be printed in plain text.
D. An interactive input box will appear in the notebook; if the right password is provided, the connection will succeed and the encoded password will be saved to DBFS.
E. An interactive input box will appear in the notebook; if the right password is provided, the connection will succeed and the password will be printed in plain text.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 7:
Which statement describes Delta Lake optimized writes?
A. Optimized writes logical partitions instead of directory partitions partition boundaries are only Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from represented in metadata fewer small files are written.
B. Before a job cluster terminates, OPTIMIZE is executed on all tables modified during the most recent job.
C. An asynchronous job runs after the write completes to detect if files could be further compacted; yes, an OPTIMIZE job is executed toward a default of 1 GB.
D. A shuffle occurs prior to writing to try to group data together resulting in fewer files instead of each executor writing multiple files based on directory partitions.
正解:D
解説: (Topexam メンバーにのみ表示されます)

弊社は失敗したら全額で返金することを承諾します

我々は弊社のDatabricks-Certified-Data-Engineer-Professional問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

TopExamは君にDatabricks-Certified-Data-Engineer-Professionalの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用すれば試験に合格できます

弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Data-Engineer-Professional問題集の質問と答えが間違いないのを保証いたします。

Databricks-Certified-Data-Engineer-Professional無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用すれば、君は一回で試験に合格できます。

弊社は無料Databricks Databricks-Certified-Data-Engineer-Professionalサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Data-Engineer-Professionalサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Data-Engineer-Professional問題集は自分に適するかどうか判断して購入を決めることができます。

Databricks-Certified-Data-Engineer-Professional試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

一年間の無料更新サービスを提供します

君が弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Data-Engineer-Professionalをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Data-Engineer-Professionalを持っていることを保証します。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Data-Engineer-Professional問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

Databricks Certified Data Engineer Professional 認定 Databricks-Certified-Data-Engineer-Professional 試験問題:

1. Which configuration parameter directly affects the size of a spark-partition upon ingestion of data into Spark?

A) spark.sql.autoBroadcastJoinThreshold
B) spark.sql.adaptive.advisoryPartitionSizeInBytes
C) spark.sql.files.maxPartitionBytes
D) spark.sql.adaptive.coalescePartitions.minPartitionNum
E) spark.sql.files.openCostInBytes


2. The data science team has created and logged a production model using MLflow. The following code correctly imports and applies the production model to output the predictions as a new DataFrame named preds with the schema "customer_id LONG, predictions DOUBLE, date DATE".
Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from

The data science team would like predictions saved to a Delta Lake table with the ability to compare all predictions across time. Churn predictions will be made at most once per day.
Which code block accomplishes this task while minimizing potential compute costs?

A)

B)

C) preds.write.format("delta").save("/preds/churn_preds")
D) preds.write.mode("append").saveAsTable("churn_preds")
E)


3. A Delta table of weather records is partitioned by date and has the below schema:
date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT
To find all the records from within the Arctic Circle, you execute a query with the below filter:
latitude > 66.3
Which statement describes how the Delta engine identifies which files to load?

A) All records are cached to an operational database and then the filter is applied
B) The Hive metastore is scanned for min and max statistics for the latitude column
C) The Parquet file footers are scanned for min and max statistics for the latitude column
D) The Delta log is scanned for min and max statistics for the latitude column
E) All records are cached to attached storage and then the filter is applied Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from


4. A data engineer, User A, has promoted a new pipeline to production by using the REST API to programmatically create several jobs. A DevOps engineer, User B, has configured an external orchestration tool to trigger job runs through the REST API. Both users authorized the REST API calls using their personal access tokens.
Which statement describes the contents of the workspace audit logs concerning these events?

A) Because User A created the jobs, their identity will be associated with both the job creation Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from events and the job run events.
B) Because these events are managed separately, User A will have their identity associated with the job creation events and User B will have their identity associated with the job run events.
C) Because User B last configured the jobs, their identity will be associated with both the job creation events and the job run events.
D) Because the REST API was used for job creation and triggering runs, a Service Principal will be automatically used to identity these events.
E) Because the REST API was used for job creation and triggering runs, user identity will not be captured in the audit logs.


5. A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from structure.
The silver_device_recordings table will be used downstream for highly selective joins on a number of fields, and will also be leveraged by the machine learning team to filter on a handful of relevant fields, in total, 15 fields have been identified that will often be used for filter and join logic.
The data engineer is trying to determine the best approach for dealing with these nested fields before declaring the table schema.
Which of the following accurately presents information about Delta Lake and Databricks that may Impact their decision-making process?

A) By default Delta Lake collects statistics on the first 32 columns in a table; these statistics are leveraged for data skipping when executing selective queries.
B) Tungsten encoding used by Databricks is optimized for storing string data: newly-added native support for querying JSON strings means that string types are always most efficient.
C) Schema inference and evolution on Databricks ensure that inferred types will always accurately match the data types used by downstream systems.
D) Because Delta Lake uses Parquet for data storage, Dremel encoding information for nesting can be directly referenced by the Delta transaction log.


質問と回答:

質問 # 1
正解: C
質問 # 2
正解: D
質問 # 3
正解: D
質問 # 4
正解: B
質問 # 5
正解: A

Databricks-Certified-Data-Engineer-Professional 関連試験
Databricks-Certified-Professional-Data-Scientist - Databricks Certified Professional Data Scientist Exam
Associate-Developer-Apache-Spark - Databricks Certified Associate Developer for Apache Spark 3.0 Exam
Databricks-Certified-Data-Engineer-Associate - Databricks Certified Data Engineer Associate Exam
Databricks-Certified-Professional-Data-Engineer - Databricks Certified Professional Data Engineer Exam
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。