弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Certified-Data-Engineer-Professional問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
TopExamは君にDatabricks-Certified-Data-Engineer-Professionalの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用すれば試験に合格できます
弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Certified-Data-Engineer-Professional問題集の質問と答えが間違いないのを保証いたします。
この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Certified-Data-Engineer-Professionalを利用すれば、君は一回で試験に合格できます。
弊社は無料Databricks Databricks-Certified-Data-Engineer-Professionalサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Certified-Data-Engineer-Professionalサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Certified-Data-Engineer-Professional問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Certified-Data-Engineer-Professional試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Certified-Data-Engineer-Professionalをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Certified-Data-Engineer-Professionalをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Certified-Data-Engineer-Professionalを持っていることを保証します。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Certified-Data-Engineer-Professional問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
Databricks Certified Data Engineer Professional 認定 Databricks-Certified-Data-Engineer-Professional 試験問題:
1. The business intelligence team has a dashboard configured to track various summary metrics for retail stories. This includes total sales for the previous day alongside totals and averages for a variety of time periods. The fields required to populate this dashboard have the following schema:
For Demand forecasting, the Lakehouse contains a validated table of all itemized sales updated incrementally in near real-time. This table named products_per_order, includes the following fields:
Because reporting on long-term sales trends is less volatile, analysts using the new dashboard only require data to be refreshed once daily. Because the dashboard will be queried interactively by many users throughout a normal business day, it should return results quickly and reduce total compute associated with each materialization.
Which solution meets the expectations of the end users while controlling and limiting possible costs?
A) Define a view against the products_per_order table and define the dashboard against this view.
B) Use Structure Streaming to configure a live dashboard against the products_per_order table within a Databricks notebook.
C) Configure a webhook to execute an incremental read against products_per_order each time the dashboard is refreshed.
D) Use the Delta Cache to persists the products_per_order table in memory to quickly the dashboard with each query.
E) Populate the dashboard by configuring a nightly batch job to save the required to quickly update the dashboard with each query.
2. A team of data engineer are adding tables to a DLT pipeline that contain repetitive expectations for many of the same data quality checks.
One member of the team suggests reusing these data quality rules across all tables defined for this pipeline.
What approach would allow them to do this?
A) Use global Python variables to make expectations visible across DLT notebooks included in the same pipeline.
B) Maintain data quality rules in a separate Databricks notebook that each DLT notebook of file.
C) Add data quality constraints to tables in this pipeline using an external job with access to pipeline configuration files.
D) Maintain data quality rules in a Delta table outside of this pipeline's target schema, providing the schema name as a pipeline parameter.
3. The marketing team is looking to share data in an aggregate table with the sales organization, but the field names used by the teams do not match, and a number of marketing specific fields have not been approval for the sales org.
Which of the following solutions addresses the situation while emphasizing simplicity?
A) Add a parallel table write to the current production pipeline, updating a new sales table that varies Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from as required from marketing table.
B) Instruct the marketing team to download results as a CSV and email them to the sales organization.
C) Create a view on the marketing table selecting only these fields approved for the sales team alias the names of any fields that should be standardized to the sales naming conventions.
D) Create a new table with the required schema and use Delta Lake's DEEP CLONE functionality to sync up changes committed to one table to the corresponding table.
E) Use a CTAS statement to create a derivative table from the marketing table configure a production jon to propagation changes.
4. Which statement characterizes the general programming model used by Spark Structured Streaming?
A) Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.
B) Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.
C) Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.
D) Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.
E) Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.
5. The following code has been migrated to a Databricks notebook from a legacy workload:
The code executes successfully and provides the logically correct results, however, it takes over
20 minutes to extract and load around 1 GB of data.
Which statement is a possible explanation for this behavior?
A) %sh does not distribute file moving operations; the final line of code should be updated to use %fs instead.
B) %sh executes shell code on the driver node. The code does not take advantage of the worker nodes or Databricks optimized Spark.
C) Instead of cloning, the code should use %sh pip install so that the Python code can get executed in parallel across all nodes in a cluster.
D) %sh triggers a cluster restart to collect and install Git. Most of the latency is related to cluster startup time.
E) Python will always execute slower than Scala on Databricks. The run.py script should be refactored to Scala.
質問と回答:
質問 # 1 正解: E | 質問 # 2 正解: D | 質問 # 3 正解: C | 質問 # 4 正解: D | 質問 # 5 正解: B |