HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Google Professional-Machine-Learning-Engineer 問題集

Professional-Machine-Learning-Engineer

試験コード:Professional-Machine-Learning-Engineer

試験名称:Google Professional Machine Learning Engineer

最近更新時間:2025-01-20

問題と解答:全290問

Professional-Machine-Learning-Engineer 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Professional-Machine-Learning-Engineer 資格取得

質問 1:
You work for a bank and are building a random forest model for fraud detection. You have a dataset that includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?
A. Z-normalize all the numeric features.
B. Oversample the fraudulent transaction 10 times.
C. Use one-hot encoding on all categorical features.
D. Write your data in TFRecords.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 2:
You have recently trained a scikit-learn model that you plan to deploy on Vertex Al. This model will support both online and batch prediction. You need to preprocess input data for model inference. You want to package the model for deployment while minimizing additional code What should you do?
A. 1 Upload your model to the Vertex Al Model Registry by using a prebuilt scikit-learn prediction container
2 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig.inscanceType setting to transform your input data
B. 1 Wrap your model in a custom prediction routine (CPR). and build a container image from the CPR local model
2 Upload your sci-kit learn model container to Vertex Al Model Registry
3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job
C. 1 Create a custom container for your sci-kit learn model.
2 Upload your model and custom container to Vertex Al Model Registry
3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig. instanceType setting to transform your input data
D. 1. Create a custom container for your sci-kit learn model,
2 Define a custom serving function for your model
3 Upload your model and custom container to Vertex Al Model Registry
4 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You have been asked to productionize a proof-of-concept ML model built using Keras. The model was trained in a Jupyter notebook on a data scientist's local machine. The notebook contains a cell that performs data validation and a cell that performs model analysis. You need to orchestrate the steps contained in the notebook and automate the execution of these steps for weekly retraining. You expect much more training data in the future. You want your solution to take advantage of managed services while minimizing cost.
What should you do?
A. Rewrite the steps in the Jupyter notebook as an Apache Spark job, and schedule the execution of the job on ephemeral Dataproc clusters using Cloud Scheduler.
B. Write the code as a TensorFlow Extended (TFX) pipeline orchestrated with Vertex AI Pipelines. Use standard TFX components for data validation and model analysis, and use Vertex AI Pipelines for model retraining.
C. Move the Jupyter notebook to a Notebooks instance on the largest N2 machine type, and schedule the execution of the steps in the Notebooks instance using Cloud Scheduler.
D. Extract the steps contained in the Jupyter notebook as Python scripts, wrap each script in an Apache Airflow BashOperator, and run the resulting directed acyclic graph (DAG) in Cloud Composer.
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You are developing an ML model in a Vertex Al Workbench notebook. You want to track artifacts and compare models during experimentation using different approaches. You need to rapidly and easily transition successful experiments to production as you iterate on your model implementation. What should you do?
A. 1 Create a Vertex Al pipeline Use the Dataset and Model artifact types from the Kubeflow Pipelines.
DSL as the inputs and outputs of the components in your pipeline.
2. In your training component use the Vertex Al SDK to create an experiment run Configure the log_params and log_metrics functions to track parameters and metrics of your experiment.
B. 1. Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, save your dataset to a Cloud Storage bucket and upload the models to Vertex Al Model Registry.
2 After a successful experiment create a Vertex Al pipeline.
C. 1 Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, and attach dataset and model artifacts as inputs and outputs to each execution.
2 After a successful experiment create a Vertex Al pipeline.
D. 1 Create a Vertex Al pipeline with parameters you want to track as arguments to your Pipeline Job Use the Metrics. Model, and Dataset artifact types from the Kubeflow Pipelines DSL as the inputs and outputs of the components in your pipeline.
2. Associate the pipeline with your experiment when you submit the job.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 5:
Your data science team has requested a system that supports scheduled model retraining, Docker containers, and a service that supports autoscaling and monitoring for online prediction requests. Which platform components should you choose for this system?
A. Cloud Composer, BigQuery ML , and Al Platform Prediction
B. Vertex AI Pipelines and Al Platform Prediction
C. Vertex AI Pipelines and App Engine
D. Cloud Composer, Al Platform Training with custom containers, and App Engine
正解:B
解説: (Topexam メンバーにのみ表示されます)

質問 6:
You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?
A. Load the model directly into the Dataflow job as a dependency, and use it for prediction.
B. Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.
C. Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.
D. Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.
正解:A
解説: (Topexam メンバーにのみ表示されます)

弊社のGoogle Professional-Machine-Learning-Engineerを利用すれば試験に合格できます

弊社のGoogle Professional-Machine-Learning-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はProfessional-Machine-Learning-Engineer問題集の質問と答えが間違いないのを保証いたします。

Professional-Machine-Learning-Engineer無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のGoogle Professional-Machine-Learning-Engineerを利用すれば、君は一回で試験に合格できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のProfessional-Machine-Learning-Engineer問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のProfessional-Machine-Learning-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のGoogle Professional-Machine-Learning-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

Google Professional-Machine-Learning-Engineer 認定試験の出題範囲:

トピック出題範囲
トピック 1
  • Collaborating within and across teams to manage data and models: It explores and processes organization-wide data including Apache Spark, Cloud Storage, Apache Hadoop, Cloud SQL, and Cloud Spanner. The topic also discusses using Jupyter notebooks to model prototype. Lastly, it discusses tracking and running ML experiments.
トピック 2
  • Serving and scaling models: Serving models and scaling online model serving are its sub-topics.
トピック 3
  • Architecting low-code ML solutions: It covers development of ML models by using BigQuery ML, using ML APIs to build AI solutions, and using AutoML to train models.
トピック 4
  • Monitoring ML solutions: It identifies risks to ML solutions. Moreover, the topic discusses monitoring, testing, and troubleshooting ML solutions.
トピック 5
  • Scaling prototypes into ML models: This topic covers building and training models. It also focuses on opting suitable hardware for training.

参照:https://cloud.google.com/certification/guides/machine-learning-engineer

弊社は無料Google Professional-Machine-Learning-Engineerサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Professional-Machine-Learning-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのProfessional-Machine-Learning-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。

Professional-Machine-Learning-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

一年間の無料更新サービスを提供します

君が弊社のGoogle Professional-Machine-Learning-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたGoogle Professional-Machine-Learning-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のGoogle Professional-Machine-Learning-Engineerを持っていることを保証します。

TopExamは君にProfessional-Machine-Learning-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

Professional-Machine-Learning-Engineer 関連試験
Associate-Cloud-Engineer-JPN - Google Associate Cloud Engineer Exam (Associate-Cloud-Engineer日本語版)
Professional-Cloud-Database-Engineer - Google Cloud Certified - Professional Cloud Database Engineer
Professional-Cloud-Security-Engineer-JPN - Google Cloud Certified - Professional Cloud Security Engineer Exam (Professional-Cloud-Security-Engineer日本語版)
Cloud-Digital-Leader-JPN - Google Cloud Digital Leader (Cloud-Digital-Leader日本語版)
Professional-Collaboration-Engineer-JPN - Google Cloud Certified - Professional Collaboration Engineer (Professional-Collaboration-Engineer日本語版)
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。