HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Google Professional-Machine-Learning-Engineer 問題集

Professional-Machine-Learning-Engineer

試験コード:Professional-Machine-Learning-Engineer

試験名称:Google Professional Machine Learning Engineer

最近更新時間:2025-03-31

問題と解答:全290問

Professional-Machine-Learning-Engineer 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集Professional-Machine-Learning-Engineer 資格取得

質問 1:
You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects.
Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?
A. AutoML Vision model
B. AutoML Vision Edge mobile-high-accuracy-1 model
C. AutoML Vision Edge mobile-low-latency-1 model
D. AutoML Vision Edge mobile-versatile-1 model
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 2:
You work at a bank You have a custom tabular ML model that was provided by the bank's vendor. The training data is not available due to its sensitivity. The model is packaged as a Vertex Al Model serving container which accepts a string as input for each prediction instance. In each string the feature values are separated by commas. You want to deploy this model to production for online predictions, and monitor the feature distribution over time with minimal effort What should you do?
A. 1 Refactor the serving container to accept key-value pairs as input format.
2 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.
3. Create a Vertex Al Model Monitoring job with feature skew detection as the monitoring objective.
B. 1 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.
2 Create a Vertex Al Model Monitoring job with feature skew detection as the monitoring objective and provide an instance schema.
C. 1 Refactor the serving container to accept key-value pairs as input format.
2. Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Al endpoint.
3. Create a Vertex Al Model Monitoring job with feature drift detection as the monitoring objective.
D. 1 Upload the model to Vertex Al Model Registry and deploy the model to a Vertex Ai endpoint.
2. Create a Vertex Al Model Monitoring job with feature drift detection as the monitoring objective, and provide an instance schema.
正解:D
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You recently built the first version of an image segmentation model for a self-driving car. After deploying the model, you observe a decrease in the area under the curve (AUC) metric. When analyzing the video recordings, you also discover that the model fails in highly congested traffic but works as expected when there is less traffic. What is the most likely reason for this result?
A. The model is overfitting in areas with less traffic and underfitting in areas with more traffic.
B. Too much data representing congested areas was used for model training.
C. Gradients become small and vanish while backpropagating from the output to input nodes.
D. AUC is not the correct metric to evaluate this classification model.
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You developed a Transformer model in TensorFlow to translate text Your training data includes millions of documents in a Cloud Storage bucket. You plan to use distributed training to reduce training time. You need to configure the training job while minimizing the effort required to modify code and to manage the clusters configuration. What should you do?
A. Create a Vertex Al custom training job with GPU accelerators for the second worker pool Use tf .
distribute.MultiWorkerMirroredStrategy for distribution.
B. Create a Vertex Al custom distributed training job with Reduction Server Use N1 high-memory machine type instances for the first and second pools, and use N1 high-CPU machine type instances for the third worker pool.
C. Create a training job that uses Cloud TPU VMs Use tf.distribute.TPUStrategy for distribution.
D. Create a Vertex Al custom training job with a single worker pool of A2 GPU machine type instances Use tf .distribute.MirroredStraregy for distribution.
正解:C
解説: (Topexam メンバーにのみ表示されます)

質問 5:
You are training an object detection machine learning model on a dataset that consists of three million X-ray images, each roughly 2 GB in size. You are using Vertex AI Training to run a custom training application on a Compute Engine instance with 32-cores, 128 GB of RAM, and 1 NVIDIA P100 GPU. You notice that model training is taking a very long time. You want to decrease training time without sacrificing model performance. What should you do?
A. Replace the NVIDIA P100 GPU with a v3-32 TPU in the training job.
B. Use the tf.distribute.Strategy API and run a distributed training job.
C. Increase the instance memory to 512 GB and increase the batch size.
D. Enable early stopping in your Vertex AI Training job.
正解:B

質問 6:
Your team frequently creates new ML models and runs experiments. Your team pushes code to a single repository hosted on Cloud Source Repositories. You want to create a continuous integration pipeline that automatically retrains the models whenever there is any modification of the code. What should be your first step to set up the CI pipeline?
A. Configure a Cloud Build trigger with the event set as "Push to a branch"
B. Configure a Cloud Build trigger with the event set as "Pull Request"
C. Configure a Cloud Function that builds the repository each time there is a code change.
D. Configure a Cloud Function that builds the repository each time a new branch is created.
正解:A
解説: (Topexam メンバーにのみ表示されます)

弊社のGoogle Professional-Machine-Learning-Engineerを利用すれば試験に合格できます

弊社のGoogle Professional-Machine-Learning-Engineerは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はProfessional-Machine-Learning-Engineer問題集の質問と答えが間違いないのを保証いたします。

Professional-Machine-Learning-Engineer無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のGoogle Professional-Machine-Learning-Engineerを利用すれば、君は一回で試験に合格できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のProfessional-Machine-Learning-Engineer問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のProfessional-Machine-Learning-Engineer問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のGoogle Professional-Machine-Learning-Engineerを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

弊社は無料Google Professional-Machine-Learning-Engineerサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Professional-Machine-Learning-Engineerサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのProfessional-Machine-Learning-Engineer問題集は自分に適するかどうか判断して購入を決めることができます。

Professional-Machine-Learning-Engineer試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

一年間の無料更新サービスを提供します

君が弊社のGoogle Professional-Machine-Learning-Engineerをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたGoogle Professional-Machine-Learning-Engineerをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のGoogle Professional-Machine-Learning-Engineerを持っていることを保証します。

Google Professional-Machine-Learning-Engineer 認定試験の出題範囲:

トピック出題範囲
トピック 1
  • Collaborating within and across teams to manage data and models: It explores and processes organization-wide data including Apache Spark, Cloud Storage, Apache Hadoop, Cloud SQL, and Cloud Spanner. The topic also discusses using Jupyter Notebooks to model prototypes. Lastly, it discusses tracking and running ML experiments.
トピック 2
  • Serving and scaling models: This section deals with Batch and online inference, using frameworks such as XGBoost, and managing features using VertexAI.
トピック 3
  • Monitoring ML solutions: It identifies risks to ML solutions. Moreover, the topic discusses monitoring, testing, and troubleshooting ML solutions.
トピック 4
  • Automating and orchestrating ML pipelines: This topic focuses on developing end-to-end ML pipelines, automation of model retraining, and lastly tracking and auditing metadata.
トピック 5
  • Scaling prototypes into ML models: This topic covers building and training models. It also focuses on opting for suitable hardware for training.

参照:https://cloud.google.com/certification/guides/machine-learning-engineer

TopExamは君にProfessional-Machine-Learning-Engineerの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

Professional-Machine-Learning-Engineer 関連試験
Professional-Cloud-Architect-JPN - Google Certified Professional - Cloud Architect (GCP) (Professional-Cloud-Architect日本語版)
Professional-Data-Engineer-JPN - Google Certified Professional Data Engineer Exam (Professional-Data-Engineer日本語版)
Professional-Cloud-Security-Engineer - Google Cloud Certified - Professional Cloud Security Engineer Exam
Associate-Google-Workspace-Administrator - Associate Google Workspace Administrator
Professional-Collaboration-Engineer - Google Cloud Certified - Professional Collaboration Engineer
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。