HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

NVIDIA NCA-GENM 問題集

NCA-GENM

試験コード:NCA-GENM

試験名称:NVIDIA Generative AI Multimodal

最近更新時間:2025-04-14

問題と解答:全403問

NCA-GENM 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集NCA-GENM 資格取得

質問 1:
You are training a multimodal generative A1 model that takes text and images as input to generate videos. During experimentation, you observe that the model performs well on common scenarios (e.g., 'a dog playing in the park') but struggles to generate coherent videos for less frequent or abstract scenarios (e.g., 'the concept of time flowing'). What is the MOST effective strategy to improve the model's performance on these challenging scenarios, focusing on test data quality?
A. Train the model for a significantly longer duration on the existing training data.
B. Implement data augmentation techniques on the existing training data, focusing on color adjustments and minor image transformations.
C. Increase the size of the training dataset by duplicating existing common scenario examples.
D. Reduce the complexity of the model architecture to prevent overfitting on the common scenarios.
E. Curate a new test dataset specifically containing challenging scenarios and use it to evaluate and fine-tune the model. Ensure the new test data includes diverse interpretations and variations of the abstract concepts.
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 2:
You're training a Generative Adversarial Network (GAN) to generate realistic images of faces. After several epochs, you notice that the generator is producing very similar faces, lacking diversity. Which of the following techniques could BEST address this mode collapse issue?
A. Use a simpler generator architecture.
B. Reduce the noise injected into the generator's input.
C. Increase the batch size used for training the generator
D. Decrease the learning rate of the discriminator.
E. Implement Minibatch Discrimination in the discriminator.
正解:E
解説: (Topexam メンバーにのみ表示されます)

質問 3:
You're training a VQA (Visual Question Answering) model. During evaluation, you notice the model performs well on common object recognition tasks but struggles with questions requiring reasoning about object relationships or scene understanding. What are the MOST effective strategies to improve the model's performance on these complex reasoning tasks? (Choose two)
A. Train the model on a larger dataset with more diverse and complex questions/answers.
B. Decrease the learning rate.
C. Increase the size of the image embedding.
D. Replace the LSTM with a simpler RNN in the question encoder.
E. Use a more sophisticated attention mechanism that attends to relevant image regions based on the question.
正解:A,E
解説: (Topexam メンバーにのみ表示されます)

質問 4:
You're working with a text-to-image generation model. After training, you notice the generated images lack fine-grained details and appear blurry. Which hyperparameter tuning strategy would be MOST effective in improving the visual quality of the generated images, considering the computational cost?
A. Optimizing the learning rate schedule.
B. Decreasing the batch size.
C. Adding more layers to the discriminator network (if using GANs).
D. Increasing the number of training epochs.
E. Switching to a different model architecture (e.g., from VAE to GAN).
正解:A
解説: (Topexam メンバーにのみ表示されます)

質問 5:
You're building a generative A1 model that can create realistic 3D models from text descriptions. You have a dataset of text descriptions and corresponding 3D models, but the alignment between the text and the 3D models is weak. The model sometimes generates 3D shapes that don't accurately reflect the text. Which of the following techniques could improve the alignment between the text descriptions and the generated 3D models?
A. Applying data augmentation techniques to the 3D models (e.g., random rotations and scaling).
B. Training the model with a larger batch size.
C. Using a pre-trained text encoder (e.g., BERT or CLIP) to extract meaningful features from the text descriptions.
D. Increasing the number of vertices and faces in the 3D models.
E. Using a contrastive loss function that encourages the model to generate 3D models that are semantically similar to the corresponding text descriptions.
正解:C,E
解説: (Topexam メンバーにのみ表示されます)

質問 6:
You are working with a large dataset of images to train a Generative A1 model. You suspect that some images are corrupted or of poor quality, which could negatively impact training. Which of the following methods would be the MOST effective in identifying and removing these problematic images?
A. Calculate the average pixel intensity for each image and remove those with very low or very high average intensity.
B. Compute the image sharpness (e.g., using Laplacian variance) and remove images with low sharpness values.
C. Manually inspect each image and remove those that appear to be corrupted or low quality.
D. Use a pre-trained image quality assessment model (e.g., BRISQUE, NIQE) to score each image and remove those with low scores.
E. Check for file corruption errors during image loading and remove those files.
正解:B,D,E
解説: (Topexam メンバーにのみ表示されます)

質問 7:
Which data augmentation techniques are MOST suitable for improving the robustness of a multimodal model that uses images and text?
A. Rescaling images and changing the font of the text.
B. Adding Gaussian noise to images and randomly deleting words in the text.
C. Changing the image resolution and increasing the text size.
D. Randomly cropping images and translating text to different languages.
E. Rotating images and back-translating text (translating to another language and back to the original).
正解:B,E
解説: (Topexam メンバーにのみ表示されます)

一年間の無料更新サービスを提供します

君が弊社のNVIDIA NCA-GENMをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたNVIDIA NCA-GENMをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のNVIDIA NCA-GENMを持っていることを保証します。

TopExamは君にNCA-GENMの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社は無料NVIDIA NCA-GENMサンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料NCA-GENMサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのNCA-GENM問題集は自分に適するかどうか判断して購入を決めることができます。

NCA-GENM試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のNCA-GENM問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

弊社は失敗したら全額で返金することを承諾します

我々は弊社のNCA-GENM問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のNVIDIA NCA-GENMを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

弊社のNVIDIA NCA-GENMを利用すれば試験に合格できます

弊社のNVIDIA NCA-GENMは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はNCA-GENM問題集の質問と答えが間違いないのを保証いたします。

NCA-GENM無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のNVIDIA NCA-GENMを利用すれば、君は一回で試験に合格できます。

NVIDIA Generative AI Multimodal 認定 NCA-GENM 試験問題:

1. Consider a system that generates captions for images, and a key metric is BLEU score. You observe that while the BLEU score is high, the generated captions often lack detailed descriptions of the objects and relationships within the image. Which of the following strategies would you employ to improve the descriptive richness of the generated captions?

A) Train the model to minimize cross-entropy loss between predicted and ground truth captions.
B) Fine-tune the model using Reinforcement Learning with a reward function that encourages detailed descriptions, such as CIDEr or SPICE.
C) Reduce the size of the vocabulary to focus on the most common words.
D) Increase the beam size during decoding to explore a wider range of possible captions.
E) Implement early stopping based solely on BLEU score during training.


2. You're building a real-time voice cloning application using NVIDIA Riv
a. You need to ensure high-quality synthesized speech with minimal latency. Which of the following Riva configurations would provide the BEST trade-off between quality and speed?

A) Using a pre-trained, open-source text-to-speech model and a CPU-based vocoder, optimized for minimal memory footprint.
B) Using a large, high-capacity Tacotron 2 text-to-speech model and a high-resolution WaveGlow vocoder, deployed on a single, low-power GPU.
C) Using a smaller, faster FastSpeech text-to-speech model and a parallel WaveGAN vocoder, deployed on a multi-GPU server with TensorRT optimization enabled.
D) Using a large, transformer-based text-to-speech model with aggressive quantization and pruning, deployed on a cloud-based TPIJ instance.
E) Using only the open source implementation and not NVIDIA Riva to implement a Voice Cloning application


3. Consider the following code snippet used in training a multimodal model:

During experimentation, you discover that the image modality contributes negligibly to the final prediction. How would you modify the training loop to dynamically adjust the importance of each modality?

A) Use a curriculum learning approach where the model is initially trained only on the text modality, and the image modality is gradually introduced.
B) Implement a separate loss function for the image modality and adjust its weight based on validation performance.
C) Apply a fixed weight to the image features before feeding them into the model.
D) Compute modality-specific gradients and apply a scaling factor to the image gradients based on their magnitude relative to the text gradients.
E) Introduce a modality dropout mechanism that randomly drops either the image or text modality during each training iteration.


4. You observe that the generated images often lack fine-grained details and tend to be blurry. Which of the following techniques could MOST effectively improve the visual quality of the generated images?

A) Using a larger dataset of text-image pairs.
B) Using a variational autoencoder (VAE) instead of a GAN.unlikely to significantly improve diagnosis accuracy.
C) Increasing the batch size during training.
D) Decreasing the learning rate during training.
E) Implementing a discriminator network and using adversarial training (GAN).


5. Which of the following techniques can be used to reduce the computational cost and memory footprint of large language models (LLMs) during inference?

A) Quantization
B) Knowledge Distillation
C) Pruning
D) Adding more layers
E) Increasing the model size


質問と回答:

質問 # 1
正解: B
質問 # 2
正解: C
質問 # 3
正解: D
質問 # 4
正解: E
質問 # 5
正解: A、B、C

NCA-GENM 関連試験
NCA-AIIO - NVIDIA-Certified Associate AI Infrastructure and Operations
連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。