質問 1:Which of the following is a benefit of logging a model signature with an MLflow model?
A. The schema of input data will be converted to match the signature
B. The model can be deployed using real-time serving tools
C. The model will be secured by the user that developed it
D. The model will have a unique identifier in the MLflow experiment
E. The schema of input data can be validated when serving models
正解:A
質問 2:A data scientist has created a Python function compute_features that returns a Spark DataFrame with the following schema:
The resulting DataFrame is assigned to the features_df variable. The data scientist wants to create a Feature Store table using features_df.
Which of the following code blocks can they use to create and populate the Feature Store table using the Feature Store Client fs?
A. features_df.write.mode("feature").path("new_table")
B. C. features_df.write.mode("fs").path("new_table")
D. E.
正解:E
質問 3:A machine learning engineer has developed a model and registered it using the FeatureStoreClient fs. The model has model URI model_uri. The engineer now needs to perform batch inference on customer-level Spark DataFrame spark_df, but it is missing a few of the static features that were used when training the model. The customer_id column is the primary key of spark_df and the training set used when training and logging the model.
Which of the following code blocks can be used to compute predictions for spark_df when the missing feature values can be found in the Feature Store by searching for features by customer_id?
A. df = fs.get_missing_features(spark_df, model_uri)
fs.score_batch(model_uri, df)
df = fs.get_missing_features(spark_df)
B. df = fs.get_missing_features(spark_df, model_uri)
fs.score_model(model_uri, df)
C. fs.score_batch(model_uri, spark_df)
D. fs.score_model(model_uri, spark_df)
E. fs.score_batch(model_uri, df)
正解:C
質問 4:A machine learning engineer wants to deploy a model for real-time serving using MLflow Model Serving. For the model, the machine learning engineer currently has one model version in each of the stages in the MLflow Model Registry. The engineer wants to know which model versions can be queried once Model Serving is enabled for the model.
Which of the following lists all of the MLflow Model Registry stages whose model versions are automatically deployed with Model Serving?
A. [None. Staging. Production
B. Production
C. Staging. Production
D. Staging. Production. Archived
E. None. Staging. Production. Archived
正解:C
質問 5:Which of the following is a probable response to identifying drift in a machine learning application?
A. None of these responses
B. Retraining and deploying a model on more recent data
C. All of these responses
D. Sunsetting the machine learning application
E. Rebuilding the machine learning application with a new label variable
正解:A
質問 6:A data scientist has written a function to track the runs of their random forest model. The data scientist is changing the number of trees in the forest across each run.
Which of the following MLflow operations is designed to log single values like the number of trees in a random forest?
A. mlflow.log_param
B. mlflow.log_metric
C. mlflow.log_artifact
D. mlflow.log_model
E. There is no way to store values like this.
正解:B
TopExamは君にDatabricks-Machine-Learning-Professionalの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Machine-Learning-Professionalを利用すれば試験に合格できます
弊社のDatabricks Databricks-Machine-Learning-Professionalは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Machine-Learning-Professional問題集の質問と答えが間違いないのを保証いたします。
この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Machine-Learning-Professionalを利用すれば、君は一回で試験に合格できます。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Machine-Learning-Professional問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
弊社は無料Databricks Databricks-Machine-Learning-Professionalサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Machine-Learning-Professionalサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Machine-Learning-Professional問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Machine-Learning-Professional試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
Databricks Databricks-Machine-Learning-Professional 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Identify that data can arrive out-of-order with structured streaming
- Identify how model serving uses one all-purpose cluster for a model deployment
|
トピック 2 | - Describe the advantages of using the pyfunc MLflow flavor
- Manually log parameters, models, and evaluation metrics using MLflow
|
トピック 3 | - Identify less performant data storage as a solution for other use cases
- Describe why complex business logic must be handled in streaming deployments
|
トピック 4 | - Identify live serving benefits of querying precomputed batch predictions
- Describe Structured Streaming as a common processing tool for ETL pipelines
|
トピック 5 | - Test whether the updated model performs better on the more recent data
- Identify when retraining and deploying an updated model is a probable solution to drift
|
トピック 6 | - Identify which code block will trigger a shown webhook
- Describe the basic purpose and user interactions with Model Registry
|
トピック 7 | - Describe concept drift and its impact on model efficacy
- Describe summary statistic monitoring as a simple solution for numeric feature drift
|
トピック 8 | - Describe model serving deploys and endpoint for every stage
- Identify scenarios in which feature drift and
- or label drift are likely to occur
|
トピック 9 | - Identify JIT feature values as a need for real-time deployment
- Describe how to list all webhooks and how to delete a webhook
|
トピック 10 | - Create, overwrite, merge, and read Feature Store tables in machine learning workflows
- View Delta table history and load a previous version of a Delta table
|
トピック 11 | - Identify the requirements for tracking nested runs
- Describe an MLflow flavor and the benefits of using MLflow flavors
|
参照:https://www.databricks.com/learn/certification/machine-learning-professional
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Machine-Learning-Professionalをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Machine-Learning-Professionalをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Machine-Learning-Professionalを持っていることを保証します。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Machine-Learning-Professional問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Machine-Learning-Professionalを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。