質問 1:A machine learning engineer wants to view all of the active MLflow Model Registry Webhooks for a specific model.
They are using the following code block:
Which of the following changes does the machine learning engineer need to make to this code block so it will successfully accomplish the task?
A. Replace POST with GET in the call to http request
B. Replace list with webhooks in the endpoint URL
C. Replace POST with PUT in the call to http request
D. Replace list with view in the endpoint URL
E. There are no necessary changes
正解:B
質問 2:Which of the following describes the concept of MLflow Model flavors?
A. A convention that MLflow Model Registry can use to version models
B. A convention that MLflow Model Registry can use to organize its Models by project
C. A convention that deployment tools can use to understand the model
D. A convention that deployment tools can use to wrap preprocessing logic into a Model
E. A convention that MLflow Experiments can use to organize their Runs by project
正解:E
質問 3:Which of the following describes concept drift?
A. Concept drift is when there is a change in the distribution of an input variable
B. None of these describe Concept drift
C. Concept drift is when there is a change in the distribution of a target variable
D. Concept drift is when there is a change in the distribution of the predicted target given by the model
E. Concept drift is when there is a change in the relationship between input variables and target variables
正解:D
質問 4:A machine learning engineer is converting a Hyperopt-based hyperparameter tuning process from manual MLflow logging to MLflow Autologging. They are trying to determine how to manage nested Hyperopt runs with MLflow Autologging.
Which of the following approaches will create a single parent run for the process and a child run for each unique combination of hyperparameter values when using Hyperopt and MLflow Autologging?
A. Ensuring that a built-in model flavor is used for the model logging
B. Startinq a manual parent run before calling fmin
C. Starting a manual child run within the objective function
D. MLflow Autoloqqinq will automatically accomplish this task with Hyperopt
E. There is no way to accomplish nested runs with MLflow Autoloqqinq and Hyperopt
正解:B
質問 5:A machine learning engineer has registered a sklearn model in the MLflow Model Registry using the sklearn model flavor with UI model_uri.
Which of the following operations can be used to load the model as an sklearn object for batch deployment?
A. mlflow.sklearn.read_model(model_uri)
B. mlflow.spark.load_model(model_uri)
C. mlflow.pyfunc.read_model(model_uri)
D. mlflow.sklearn.load_model(model_uri)
E. mlflow.pyfunc.load_model(model_uri)
正解:E
質問 6:A machine learning engineer is migrating a machine learning pipeline to use Databricks Machine Learning. They have programmatically identified the best run from an MLflow Experiment and stored its URI in the model_uri variable and its Run ID in the run_id variable. They have also determined that the model was logged with the name "model". Now, the machine learning engineer wants to register that model in the MLflow Model Registry with the name "best_model".
Which of the following lines of code can they use to register the model to the MLflow Model Registry?
A. mlflow.register_model(f"runs:/{run_id}/model")
B. mlflow.register_model(model_uri, "best_model")
C. mlflow.register_model(f"runs:/{run_id}/best_model", "model")
D. mlflow.register_model(model_uri, "model")
E. mlflow.register_model(run_id, "best_model")
正解:D
TopExamは君にDatabricks-Machine-Learning-Professionalの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Machine-Learning-Professionalを利用すれば試験に合格できます
弊社のDatabricks Databricks-Machine-Learning-Professionalは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Machine-Learning-Professional問題集の質問と答えが間違いないのを保証いたします。
この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Machine-Learning-Professionalを利用すれば、君は一回で試験に合格できます。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Machine-Learning-Professional問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
弊社は無料Databricks Databricks-Machine-Learning-Professionalサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Machine-Learning-Professionalサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Machine-Learning-Professional問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Machine-Learning-Professional試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
Databricks Databricks-Machine-Learning-Professional 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Identify that data can arrive out-of-order with structured streaming
- Identify how model serving uses one all-purpose cluster for a model deployment
|
トピック 2 | - Describe the advantages of using the pyfunc MLflow flavor
- Manually log parameters, models, and evaluation metrics using MLflow
|
トピック 3 | - Identify less performant data storage as a solution for other use cases
- Describe why complex business logic must be handled in streaming deployments
|
トピック 4 | - Identify live serving benefits of querying precomputed batch predictions
- Describe Structured Streaming as a common processing tool for ETL pipelines
|
トピック 5 | - Test whether the updated model performs better on the more recent data
- Identify when retraining and deploying an updated model is a probable solution to drift
|
トピック 6 | - Identify which code block will trigger a shown webhook
- Describe the basic purpose and user interactions with Model Registry
|
トピック 7 | - Describe concept drift and its impact on model efficacy
- Describe summary statistic monitoring as a simple solution for numeric feature drift
|
トピック 8 | - Describe model serving deploys and endpoint for every stage
- Identify scenarios in which feature drift and
- or label drift are likely to occur
|
トピック 9 | - Identify JIT feature values as a need for real-time deployment
- Describe how to list all webhooks and how to delete a webhook
|
トピック 10 | - Create, overwrite, merge, and read Feature Store tables in machine learning workflows
- View Delta table history and load a previous version of a Delta table
|
トピック 11 | - Identify the requirements for tracking nested runs
- Describe an MLflow flavor and the benefits of using MLflow flavors
|
参照:https://www.databricks.com/learn/certification/machine-learning-professional
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Machine-Learning-Professionalをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Machine-Learning-Professionalをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Machine-Learning-Professionalを持っていることを保証します。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Machine-Learning-Professional問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Machine-Learning-Professionalを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。