質問 1:A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.
What is the most performant way to store this dataframe?
A. Store each chunk as an independent JSON file in Unity Catalog Volume. For each JSON file, the key is the document section name and the value is the array of text chunks for that section
B. Split the data into train and test set, create a unique identifier for each document, then save to a Delta table
C. First create a unique identifier for each document, then save to a Delta table
D. Flatten the dataframe to one chunk per row, create a unique identifier for each row, and save to a Delta table
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 2:A Generative Al Engineer would like an LLM to generate formatted JSON from emails. This will require parsing and extracting the following information: order ID, date, and sender email. Here's a sample email:
They will need to write a prompt that will extract the relevant information in JSON format with the highest level of output accuracy.
Which prompt will do that?
A. You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.
Here's an example: {"date": "April 16, 2024", "sender_email": "
[email protected]", "order_id":
"RE987D"}
B. You will receive customer emails and need to extract date, sender email, and order ID. You should return the date, sender email, and order ID information in JSON format.
C. You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.
D. You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in a human-readable format.
正解:A
解説: (Topexam メンバーにのみ表示されます)
質問 3:A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system's performance and understand where to focus their efforts to further improve the system.
How should the Generative AI Engineer evaluate the system?
A. Benchmark multiple LLMs with the same data and pick the best LLM for the job.
B. Use cosine similarity score to comprehensively evaluate the quality of the final generated answers.
C. Use an LLM-as-a-judge to evaluate the quality of the final answers generated.
D. Curate a dataset that can test the retrieval and generation components of the system separately. Use MLflow's built in evaluation metrics to perform the evaluation on the retrieval and generation components.
正解:D
解説: (Topexam メンバーにのみ表示されます)
質問 4:A Generative Al Engineer is building a RAG application that answers questions about internal documents for the company SnoPen AI.
The source documents may contain a significant amount of irrelevant content, such as advertisements, sports news, or entertainment news, or content about other companies.
Which approach is advisable when building a RAG application to achieve this goal of filtering irrelevant information?
A. Include in the system prompt that the application is not supposed to answer any questions unrelated to SnoPen Al.
B. Include in the system prompt that any information it sees will be about SnoPenAI, even if no data filtering is performed.
C. Consolidate all SnoPen AI related documents into a single chunk in the vector database.
D. Keep all articles because the RAG application needs to understand non-company content to avoid answering questions about them.
正解:A
解説: (Topexam メンバーにのみ表示されます)
質問 5:A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.
Which model fits this need?
A. DBRX
B. MPT-30B
C. DistilBERT
D. Llama2-70B
正解:D
解説: (Topexam メンバーにのみ表示されます)
TopExamは君にDatabricks-Generative-AI-Engineer-Associateの問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のDatabricks Databricks-Generative-AI-Engineer-Associateを利用すれば試験に合格できます
弊社のDatabricks Databricks-Generative-AI-Engineer-Associateは専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はDatabricks-Generative-AI-Engineer-Associate問題集の質問と答えが間違いないのを保証いたします。
この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のDatabricks Databricks-Generative-AI-Engineer-Associateを利用すれば、君は一回で試験に合格できます。
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のDatabricks-Generative-AI-Engineer-Associate問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
弊社は失敗したら全額で返金することを承諾します
我々は弊社のDatabricks-Generative-AI-Engineer-Associate問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のDatabricks Databricks-Generative-AI-Engineer-Associateを利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
Databricks Databricks-Generative-AI-Engineer-Associate 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Design Applications: The topic focuses on designing a prompt that elicits a specifically formatted response. It also focuses on selecting model tasks to accomplish a given business requirement. Lastly, the topic covers chain components for a desired model input and output.
|
トピック 2 | - Governance: Generative AI Engineers who take the exam get knowledge about masking techniques, guardrail techniques, and legal
- licensing requirements in this topic.
|
トピック 3 | - Evaluation and Monitoring: This topic is all about selecting an LLM choice and key metrics. Moreover, Generative AI Engineers learn about evaluating model performance. Lastly, the topic includes sub-topics about inference logging and usage of Databricks features.
|
トピック 4 | - Assembling and Deploying Applications: In this topic, Generative AI Engineers get knowledge about coding a chain using a pyfunc mode, coding a simple chain using langchain, and coding a simple chain according to requirements. Additionally, the topic focuses on basic elements needed to create a RAG application. Lastly, the topic addresses sub-topics about registering the model to Unity Catalog using MLflow.
|
トピック 5 | - Application Development: In this topic, Generative AI Engineers learn about tools needed to extract data, Langchain
- similar tools, and assessing responses to identify common issues. Moreover, the topic includes questions about adjusting an LLM's response, LLM guardrails, and the best LLM based on the attributes of the application.
|
参照:https://www.databricks.com/learn/certification/genai-engineer-associate
弊社は無料Databricks Databricks-Generative-AI-Engineer-Associateサンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料Databricks-Generative-AI-Engineer-Associateサンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのDatabricks-Generative-AI-Engineer-Associate問題集は自分に適するかどうか判断して購入を決めることができます。
Databricks-Generative-AI-Engineer-Associate試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。
一年間の無料更新サービスを提供します
君が弊社のDatabricks Databricks-Generative-AI-Engineer-Associateをご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたDatabricks Databricks-Generative-AI-Engineer-Associateをお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のDatabricks Databricks-Generative-AI-Engineer-Associateを持っていることを保証します。