無料問題集CCA175 資格取得
質問 1:
CORRECT TEXT
Problem Scenario 8 : You have been given following mysql database details as well as other info.
Please accomplish following.
1. Import joined result of orders and order_items table join on orders.order_id = order_items.order_item_order_id.
2 . Also make sure each tables file is partitioned in 2 files e.g. part-00000, part-00002
3 . Also make sure you use orderid columns for sqoop to use for boundary conditions.
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solutions:
Step 1 : Clean the hdfs file system, if they exists clean out.
hadoop fs -rm -R departments
hadoop fs -rm -R categories
hadoop fs -rm -R products
hadoop fs -rm -R orders
hadoop fs -rm -R order_items
hadoop fs -rm -R customers
Step 2 : Now import the department table as per requirement.
sqoop import \
--connect jdbc:mysql://quickstart:3306/retail_db \
-username=retail_dba \
-password=cloudera \
-query="select' from orders join order_items on orders.orderid =
order_items.order_item_order_id where \SCONDITlONS" \
-target-dir /user/cloudera/order_join \
-split-by order_id \
--num-mappers 2
Step 3 : Check imported data.
hdfs dfs -Is order_join
hdfs dfs -cat order_join/part-m-00000
hdfs dfs -cat order_join/part-m-00001
質問 2:
CORRECT TEXT
Problem Scenario 16 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish below assignment.
1. Create a table in hive as below.
create table departments_hive(department_id int, department_name string);
2. Now import data from mysql table departments to this hive table. Please make sure that data should be visible using below hive command, select" from departments_hive
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create hive table as said.
hive
show tables;
create table departments_hive(department_id int, department_name string);
Step 2 : The important here is, when we create a table without delimiter fields. Then default delimiter for hive is ^A (\001). Hence, while importing data we have to provide proper delimiter.
sqoop import \
-connect jdbc:mysql://quickstart:3306/retail_db \
~ username=retail_dba \
-password=cloudera \
--table departments \
--hive-home /user/hive/warehouse \
-hive-import \
-hive-overwrite \
--hive-table departments_hive \
--fields-terminated-by '\001'
Step 3 : Check-the data in directory.
hdfs dfs -Is /user/hive/warehouse/departments_hive
hdfs dfs -cat/user/hive/warehouse/departmentshive/part'
Check data in hive table.
Select * from departments_hive;
質問 3:
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;
質問 4:
CORRECT TEXT
Problem Scenario 30 : You have been given three csv files in hdfs as below.
EmployeeName.csv with the field (id, name)
EmployeeManager.csv (id, manager Name)
EmployeeSalary.csv (id, Salary)
Using Spark and its API you have to generate a joined output as below and save as a text tile (Separated by comma) for final distribution and output must be sorted by id.
ld,name,salary,managerName
EmployeeManager.csv
E01,Vishnu
E02,Satyam
E03,Shiv
E04,Sundar
E05,John
E06,Pallavi
E07,Tanvir
E08,Shekhar
E09,Vinod
E10,Jitendra
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
EmployeeSalary.csv
E01,50000
E02,50000
E03,45000
E04,45000
E05,50000
E06,45000
E07,50000
E08,10000
E09,10000
E10,10000
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create all three files in hdfs in directory called sparkl (We will do using Hue}.
However, you can first create in local filesystem and then
Step 2 : Load EmployeeManager.csv file from hdfs and create PairRDDs
val manager = sc.textFile("spark1/EmployeeManager.csv")
val managerPairRDD = manager.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark1/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split('\")(1)))
Step 4 : Load EmployeeSalary.csv file from hdfs and create PairRDDs
val salary = sc.textFile("spark1/EmployeeSalary.csv")
val salaryPairRDD = salary.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 4 : Join all pairRDDS
val joined = namePairRDD.join(salaryPairRDD}.join(managerPairRDD}
Step 5 : Now sort the joined results, val joinedData = joined.sortByKey()
Step 6 : Now generate comma separated data.
val finalData = joinedData.map(v=> (v._1, v._2._1._1, v._2._1._2, v._2._2))
Step 7 : Save this output in hdfs as text file.
finalData.saveAsTextFile("spark1/result.txt")
質問 5:
CORRECT TEXT
Problem Scenario 84 : In Continuation of previous question, please accomplish following activities.
1. Select all the products which has product code as null
2. Select all the products, whose name starts with Pen and results should be order by Price descending order.
3. Select all the products, whose name starts with Pen and results should be order by
Price descending order and quantity ascending order.
4. Select top 2 products by price
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
質問 6:
CORRECT TEXT
Problem Scenario 24 : You have been given below comma separated employee information.
Data Set:
name,salary,sex,age
alok,100000,male,29
jatin,105000,male,32
yogesh,134000,male,39
ragini,112000,female,35
jyotsana,129000,female,39
valmiki,123000,male,29
Requirements:
Use the netcat service on port 44444, and nc above data line by line. Please do the following activities.
1. Create a flume conf file using fastest channel, which write data in hive warehouse directory, in a table called flumemaleemployee (Create hive table as well tor given data).
2. While importing, make sure only male employee data is stored.
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Step 1 : Create hive table for flumeemployee.'
CREATE TABLE flumemaleemployee
(
name string,
salary int,
sex string,
age int
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
step 2 : Create flume configuration file, with below configuration for source, sink and channel and save it in flume4.conf.
#Define source , sink, channel and agent.
agent1 .sources = source1
agent1 .sinks = sink1
agent1 .channels = channel1
# Describe/configure source1
agent1 .sources.source1.type = netcat
agent1 .sources.source1.bind = 127.0.0.1
agent1.sources.sourcel.port = 44444
#Define interceptors
agent1.sources.source1.interceptors=il
agent1 .sources.source1.interceptors.i1.type=regex_filter
agent1 .sources.source1.interceptors.i1.regex=female
agent1 .sources.source1.interceptors.i1.excludeEvents=true
## Describe sink1
agent1 .sinks, sinkl.channel = memory-channel
agent1.sinks.sink1.type = hdfs
agent1 .sinks, sinkl. hdfs. path = /user/hive/warehouse/flumemaleemployee hdfs-agent.sinks.hdfs-write.hdfs.writeFormat=Text agentl .sinks.sink1.hdfs.fileType = Data Stream
# Now we need to define channel1 property.
agent1.channels.channel1.type = memory
agent1.channels.channell.capacity = 1000
agent1.channels.channel1.transactionCapacity = 100
# Bind the source and sink to the channel
agent1 .sources.source1.channels = channel1
agent1 .sinks.sink1.channel = channel1
step 3 : Run below command which will use this configuration file and append data in hdfs.
Start flume service:
flume-ng agent -conf /home/cloudera/flumeconf -conf-file
/home/cloudera/flumeconf/flume4.conf --name agentl
Step 4 : Open another terminal and use the netcat service, nc localhost 44444
Step 5 : Enter data line by line.
alok,100000,male,29
jatin,105000,male,32
yogesh,134000,male,39
ragini,112000,female,35
jyotsana,129000,female,39
valmiki.123000.male.29
Step 6 : Open hue and check the data is available in hive table or not.
Step 7 : Stop flume service by pressing ctrl+c
Step 8 : Calculate average salary on hive table using below query. You can use either hive command line tool or hue. select avg(salary) from flumeemployee;
弊社は失敗したら全額で返金することを承諾します
我々は弊社のCCA175問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のCloudera CCA175を利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。
Cloudera CCA175 認定試験の出題範囲:
トピック | 出題範囲 |
---|
トピック 1 | - Generate reports by using queries against loaded data
- Produce ranked or sorted data
|
トピック 2 | - Perform standard extract, transform, load (ETL) processes on data using the Spark API
- Join disparate datasets using Spark
|
トピック 3 | - Understand the fundamentals of querying datasets in Spark
- Write the results back into HDFS using Spark
|
トピック 4 | - Write queries that calculate aggregate statistics
- Load data from HDFS for use in Spark applications
|
トピック 5 | - Use Spark SQL to interact with the meta store programmatically in your applications
- Read and write files in a variety of file formats
|
参照:https://www.cloudera.com/about/training/certification/cdhhdp-certification/cca-spark.html
安全的な支払方式を利用しています
Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のCCA175問題集は全部Credit Cardで支払われることができます。
領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。
TopExamは君にCCA175の問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。
弊社のCloudera CCA175を利用すれば試験に合格できます
弊社のCloudera CCA175は専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はCCA175問題集の質問と答えが間違いないのを保証いたします。

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のCloudera CCA175を利用すれば、君は一回で試験に合格できます。
一年間の無料更新サービスを提供します
君が弊社のCloudera CCA175をご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたCloudera CCA175をお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のCloudera CCA175を持っていることを保証します。
弊社は無料Cloudera CCA175サンプルを提供します
お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料CCA175サンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのCCA175問題集は自分に適するかどうか判断して購入を決めることができます。
CCA175試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。