HACKER SAFEにより証明されたサイトは、99.9%以上のハッカー犯罪を防ぎます。
カート(0

Cloudera CCA175 問題集

CCA175

試験コード:CCA175

試験名称:CCA Spark and Hadoop Developer Exam

最近更新時間:2024-12-13

問題と解答:全96問

CCA175 無料でデモをダウンロード:

PDF版 Demo ソフト版 Demo オンライン版 Demo

追加した商品:"PDF版"
価格: ¥6599 

無料問題集CCA175 資格取得

質問 1:
CORRECT TEXT
Problem Scenario 73 : You have been given data in json format as below.
{"first_name":"Ankit", "last_name":"Jain"}
{"first_name":"Amir", "last_name":"Khan"}
{"first_name":"Rajesh", "last_name":"Khanna"}
{"first_name":"Priynka", "last_name":"Chopra"}
{"first_name":"Kareena", "last_name":"Kapoor"}
{"first_name":"Lokesh", "last_name":"Yadav"}
Do the following activity
1 . create employee.json file locally.
2 . Load this file on hdfs
3 . Register this data as a temp table in Spark using Python.
4 . Write select query and print this data.
5 . Now save back this selected data in json format.
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : create employee.json tile locally.
vi employee.json (press insert) past the content.
Step 2 : Upload this tile to hdfs, default location hadoop fs -put employee.json
Step 3 : Write spark script
#lmport SQLContext
from pyspark import SQLContext
# Create instance of SQLContext sqIContext = SQLContext(sc)
# Load json file
employee = sqlContext.jsonFile("employee.json")
# Register RDD as a temp table employee.registerTempTablef'EmployeeTab"}
# Select data from Employee table
employeelnfo = sqlContext.sql("select * from EmployeeTab"}
#lterate data and print
for row in employeelnfo.collect():
print(row)
Step 4 : Write dataas a Text file employeelnfo.toJSON().saveAsTextFile("employeeJson1")
Step 5: Check whether data has been created or not hadoop fs -cat employeeJsonl/part"

質問 2:
CORRECT TEXT
Problem Scenario 54 : You have been given below code snippet.
val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle")) val b = a.map(x => (x.length, x)) operation1
Write a correct code snippet for operationl which will produce desired output, shown below.
Array[(lnt, String)] = Array((4,lion), (7,panther), (3,dogcat), (5,tigereagle))
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
b.foidByKey("")(_ + J.collect
foldByKey [Pair]
Very similar to fold, but performs the folding separately for each key of the RDD. This function is only available if the RDD consists of two-component tuples
Listing Variants
def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V}]
def foldByKey(zeroValue: V, numPartitions: lnt)(func: (V, V) => V): RDD[(K, V)] def foldByKey(zeroValue: V, partitioner: Partitioner)(func: (V, V) => V): RDD[(K, V}]

質問 3:
CORRECT TEXT
Problem Scenario 86 : In Continuation of previous question, please accomplish following activities.
1 . Select Maximum, minimum, average , Standard Deviation, and total quantity.
2 . Select minimum and maximum price for each product code.
3. Select Maximum, minimum, average , Standard Deviation, and total quantity for each product code, hwoever make sure Average and Standard deviation will have maximum two decimal values.
4. Select all the product code and average price only where product count is more than or equal to 3.
5. Select maximum, minimum , average and total of all the products for each code. Also produce the same across all the products.
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select Maximum, minimum, average , Standard Deviation, and total quantity.
val results = sqlContext.sql('.....SELECT MAX(price) AS MAX , MIN(price) AS MIN ,
AVG(price) AS Average, STD(price) AS STD, SUM(quantity) AS total_products FROM products......) results. showQ
Step 2 : Select minimum and maximum price for each product code.
val results = sqlContext.sql(......SELECT code, MAX(price) AS Highest Price', MIN(price)
AS Lowest Price'
FROM products GROUP BY code......)
results. showQ
Step 3 : Select Maximum, minimum, average , Standard Deviation, and total quantity for each product code, hwoever make sure Average and Standard deviation will have maximum two decimal values.
val results = sqlContext.sql(......SELECT code, MAX(price), MIN(price),
CAST(AVG(price} AS DECIMAL(7,2)) AS Average', CAST(STD(price) AS DECIMAL(7,2))
AS 'Std Dev\ SUM(quantity) FROM products
GROUP BY code......)
results. showQ
Step 4 : Select all the product code and average price only where product count is more than or equal to 3.
val results = sqlContext.sql(......SELECT code AS Product Code',
COUNTf) AS Count',
CAST(AVG(price) AS DECIMAL(7,2)) AS Average' FROM products GROUP BY code
HAVING Count >=3"M") results. showQ
Step 5 : Select maximum, minimum , average and total of all the products for each code.
Also produce the same across all the products.
val results = sqlContext.sql( """SELECT
code,
MAX(price),
MIN(pnce),
CAST(AVG(price) AS DECIMAL(7,2)) AS Average',
SUM(quantity)-
FROM products
GROUP BY code
WITH ROLLUP""" )
results. show()

質問 4:
CORRECT TEXT
Problem Scenario 48 : You have been given below Python code snippet, with intermediate output.
We want to take a list of records about people and then we want to sum up their ages and count them.
So for this example the type in the RDD will be a Dictionary in the format of {name: NAME, age:AGE, gender:GENDER}.
The result type will be a tuple that looks like so (Sum of Ages, Count) people = [] people.append({'name':'Amit', 'age':45,'gender':'M'}) people.append({'name':'Ganga', 'age':43,'gender':'F'})
people.append({'name':'John', 'age':28,'gender':'M'})
people.append({'name':'Lolita', 'age':33,'gender':'F'})
people.append({'name':'Dont Know', 'age':18,'gender':'T'})
peopleRdd=sc.parallelize(people) //Create an RDD
peopleRdd.aggregate((0,0), seqOp, combOp) //Output of above line : 167, 5)
Now define two operation seqOp and combOp , such that
seqOp : Sum the age of all people as well count them, in each partition. combOp :
Combine results from all partitions.
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
seqOp = (lambda x,y: (x[0] + y['age'],x[1] + 1))
combOp = (lambda x,y: (x[0] + y[0], x[1] + y[1]))

質問 5:
CORRECT TEXT
Problem Scenario 71 :
Write down a Spark script using Python,
In which it read a file "Content.txt" (On hdfs) with following content.
After that split each row as (key, value), where key is first word in line and entire line as value.
Filter out the empty lines.
And save this key value in "problem86" as Sequence file(On hdfs)
Part 2 : Save as sequence file , where key as null and entire line as value. Read back the stored sequence files.
Content.txt
Hello this is ABCTECH.com
This is XYZTECH.com
Apache Spark Training
This is Spark Learning Session
Spark is faster than MapReduce
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 :
# Import SparkContext and SparkConf
from pyspark import SparkContext, SparkConf
Step 2:
#load data from hdfs
contentRDD = sc.textFile(MContent.txt")
Step 3:
#filter out non-empty lines
nonemptyjines = contentRDD.filter(lambda x: len(x) > 0)
Step 4:
#Split line based on space (Remember : It is mandatory to convert is in tuple} words = nonempty_lines.map(lambda x: tuple(x.split('', 1))) words.saveAsSequenceFile("problem86")
Step 5: Check contents in directory problem86 hdfs dfs -cat problem86/part*
Step 6 : Create key, value pair (where key is null)
nonempty_lines.map(lambda line: (None, Mne}).saveAsSequenceFile("problem86_1")
Step 7 : Reading back the sequence file data using spark. seqRDD =
sc.sequenceFile("problem86_1")
Step 8 : Print the content to validate the same.
for line in seqRDD.collect():
print(line)

質問 6:
CORRECT TEXT
Problem Scenario 87 : You have been given below three files
product.csv (Create this file in hdfs)
productID,productCode,name,quantity,price,supplierid
1 001,PEN,Pen Red,5000,1.23,501
1 002,PEN,Pen Blue,8000,1.25,501
1003,PEN,Pen Black,2000,1.25,501
1004,PEC,Pencil 2B,10000,0.48,502
1005,PEC,Pencil 2H,8000,0.49,502
1006,PEC,Pencil HB,0,9999.99,502
2001,PEC,Pencil 3B,500,0.52,501
2002,PEC,Pencil 4B,200,0.62,501
2003,PEC,Pencil 5B,100,0.73,501
2004,PEC,Pencil 6B,500,0.47,502
supplier.csv
supplierid,name,phone
501,ABC Traders,88881111
502,XYZ Company,88882222
503,QQ Corp,88883333
products_suppliers.csv
productID,supplierID
2001,501
2002,501
2003,501
2004,502
2001,503
Now accomplish all the queries given in solution.
Select product, its price , its supplier name where product price is less than 0.6 using
SparkSQL
正解:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql2
hdfs dfs -put product.csv sparksq!2/
hdfs dfs -put supplier.csv sparksql2/
hdfs dfs -put products_suppliers.csv sparksql2/
Step 2 : Now in spark shell
// this Is used to Implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val products = sc.textFile("sparksql2/product.csv")
val supplier = sc.textFileC'sparksq^supplier.csv")
val prdsup = sc.textFile("sparksql2/products_suppliers.csv"}
// Return the first element in this RDD
products.fi rst()
supplier.first{).
prdsup.first()
//define the schema using a case class
case class Product(productid: Integer, code: String, name: String, quantity:lnteger, price:
Float, supplierid:lnteger)
case class Suplier(supplierid: Integer, name: String, phone: String)
case class PRDSUP(productid: Integer.supplierid: Integer)
// create an RDD of Product objects
val prdRDD = products.map(_.split('\")).map(p =>
Product(p(0).tolnt,p(1),p(2),p(3).tolnt,p(4).toFloat,p(5).toint))
val supRDD = supplier.map(_.split(",")).map(p => Suplier(p(0).tolnt,p(1),p(2))) val prdsupRDD = prdsup.map(_.split(",")).map(p => PRDSUP(p(0).tolnt,p(1}.tolnt}} prdRDD.first() prdRDD.count() supRDD.first() supRDD.count()
prdsupRDD.first() prdsupRDD.count(}
// change RDD of Product objects to a DataFrame
val prdDF = prdRDD.toDF()
val supDF = supRDD.toDF()
val prdsupDF = prdsupRDD.toDF()
// register the DataFrame as a temp table prdDF.registerTempTablef'products") supDF.registerTempTablef'suppliers") prdsupDF.registerTempTablef'productssuppliers"}
//Select product, its price , its supplier name where product price is less than 0.6 val results = sqlContext.sql(......SELECT products.name, price, suppliers.name as sup_name FROM products JOIN suppliers ON products.supplierlD= suppliers.supplierlD
WHERE price < 0.6......]
results. show()

弊社は失敗したら全額で返金することを承諾します

我々は弊社のCCA175問題集に自信を持っていますから、試験に失敗したら返金する承諾をします。我々のCloudera CCA175を利用して君は試験に合格できると信じています。もし試験に失敗したら、我々は君の支払ったお金を君に全額で返して、君の試験の失敗する経済損失を減少します。

Cloudera CCA175 認定試験の出題範囲:

トピック出題範囲
トピック 1
  • Generate reports by using queries against loaded data
  • Produce ranked or sorted data
トピック 2
  • Perform standard extract, transform, load (ETL) processes on data using the Spark API
  • Join disparate datasets using Spark
トピック 3
  • Understand the fundamentals of querying datasets in Spark
  • Write the results back into HDFS using Spark
トピック 4
  • Write queries that calculate aggregate statistics
  • Load data from HDFS for use in Spark applications
トピック 5
  • Use Spark SQL to interact with the meta store programmatically in your applications
  • Read and write files in a variety of file formats

参照:https://www.cloudera.com/about/training/certification/cdhhdp-certification/cca-spark.html

安全的な支払方式を利用しています

Credit Cardは今まで全世界の一番安全の支払方式です。少数の手続きの費用かかる必要がありますとはいえ、保障があります。お客様の利益を保障するために、弊社のCCA175問題集は全部Credit Cardで支払われることができます。

領収書について:社名入りの領収書が必要な場合、メールで社名に記入していただき送信してください。弊社はPDF版の領収書を提供いたします。

TopExamは君にCCA175の問題集を提供して、あなたの試験への復習にヘルプを提供して、君に難しい専門知識を楽に勉強させます。TopExamは君の試験への合格を期待しています。

弊社のCloudera CCA175を利用すれば試験に合格できます

弊社のCloudera CCA175は専門家たちが長年の経験を通して最新のシラバスに従って研究し出した勉強資料です。弊社はCCA175問題集の質問と答えが間違いないのを保証いたします。

CCA175無料ダウンロード

この問題集は過去のデータから分析して作成されて、カバー率が高くて、受験者としてのあなたを助けて時間とお金を節約して試験に合格する通過率を高めます。我々の問題集は的中率が高くて、100%の合格率を保証します。我々の高質量のCloudera CCA175を利用すれば、君は一回で試験に合格できます。

一年間の無料更新サービスを提供します

君が弊社のCloudera CCA175をご購入になってから、我々の承諾する一年間の更新サービスが無料で得られています。弊社の専門家たちは毎日更新状態を検査していますから、この一年間、更新されたら、弊社は更新されたCloudera CCA175をお客様のメールアドレスにお送りいたします。だから、お客様はいつもタイムリーに更新の通知を受けることができます。我々は購入した一年間でお客様がずっと最新版のCloudera CCA175を持っていることを保証します。

弊社は無料Cloudera CCA175サンプルを提供します

お客様は問題集を購入する時、問題集の質量を心配するかもしれませんが、我々はこのことを解決するために、お客様に無料CCA175サンプルを提供いたします。そうすると、お客様は購入する前にサンプルをダウンロードしてやってみることができます。君はこのCCA175問題集は自分に適するかどうか判断して購入を決めることができます。

CCA175試験ツール:あなたの訓練に便利をもたらすために、あなたは自分のペースによって複数のパソコンで設置できます。

連絡方法  
 [email protected] サポート

試用版をダウンロード

人気のベンダー
Apple
Avaya
CIW
FileMaker
Lotus
Lpi
OMG
SNIA
Symantec
XML Master
Zend-Technologies
The Open Group
H3C
3COM
ACI
すべてのベンダー
TopExam問題集を選ぶ理由は何でしょうか?
 品質保証TopExamは我々の専門家たちの努力によって、過去の試験のデータが分析されて、数年以来の研究を通して開発されて、多年の研究への整理で、的中率が高くて99%の通過率を保証することができます。
 一年間の無料アップデートTopExamは弊社の商品をご購入になったお客様に一年間の無料更新サービスを提供することができ、行き届いたアフターサービスを提供します。弊社は毎日更新の情況を検査していて、もし商品が更新されたら、お客様に最新版をお送りいたします。お客様はその一年でずっと最新版を持っているのを保証します。
 全額返金弊社の商品に自信を持っているから、失敗したら全額で返金することを保証します。弊社の商品でお客様は試験に合格できると信じていますとはいえ、不幸で試験に失敗する場合には、弊社はお客様の支払ったお金を全額で返金するのを承諾します。(全額返金)
 ご購入の前の試用TopExamは無料なサンプルを提供します。弊社の商品に疑問を持っているなら、無料サンプルを体験することができます。このサンプルの利用を通して、お客様は弊社の商品に自信を持って、安心で試験を準備することができます。